Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Analysis of spontaneous emergence of cell polarity with delayed negative feedback

Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR.

Special Issues: Recent advances of mathematical modeling and computational methods in cell and developmental biology

Cell polarity refers to spatial di erences in the shape and structure of cells, which leads to the generation of diverse cell types playing di erent roles in biological processes. Cell polarization usually involves the localization of some specific signaling molecules to a proper location of the cell membrane. Recent studies proposed that delayed negative feedback may be important for maintaining the robustness of cell polarization and the observed oscillating behavior of signaling cluster. However, the fundamental mechanisms for achieving cell polarization under negative feedback remain controversial. In this paper, we formulate the cell polarization system as a non-local reaction di usion equation with positive and delayed negative feedback loops. Through the Turing stability analysis, we identify the parameter conditions, including the range of the time delay constant, for achieving cell polarization without any inhomogeneous spatial cues. Also, our numerical results support that by controlling the length of the time delay in negative feedback and the magnitude of positive feedback, the oscillating behavior of signaling cluster can be observed in our simulations.
  Figure/Table
  Supplementary
  Article Metrics

References

1. E. Bi and H. O. Park, Cell polarization and cytokinesis in budding yeast, Genetics, 191 (2012), 347–387.

2. D. M. Bryant and K. E. Mostov, From cells to organs: building polarized tissue, Nat. Rev. Mol. Cell Biol., 9 (2008), 887–901.

3. D. G. Drubin and W. J. Nelson, Origins of cell polarity, Cell, 84 (1996), 335–344.

4. M. E. Lee and V. Vasioukhin, Cell polarity and cancer–cell and tissue polarity as a non-canonical tumor suppressor, J. Cell Sci., 121 (2018), 1141–1150.

5. C. Royer and X. Lu, Epithelial cell polarity: a major gatekeeper against cancer?, Cell Death. Differ., 18 (2011), 1470–1477.

6. H. O. Park and E. Bi, Microbiology and Molecular Biology Reviews, Microbiol. Mol. Biol. Rev., 71 (2007), 48–96.

7. H. R. Bourne, D. A. Sanders and F. McCormick, The GTPase superfamily: a conserved switch for diverse cell functions, Nature, 348 (1990), 125–132.

8. S. Etienne-Manneville and A. Hall, Rho GTPases in cell biology, Nature, 420 (2002), 629–635.

9. S. J. Altschuler, S. B. Angenent, Y. Wang and L. F. Wang, On the spontaneous emergence of cell polarity, Nature, 454 (2008), 886–889.

10. B. D. Slaughter, S. E. Smith and R. Li, Symmetry breaking in the life cycle of the budding yeast, Csh. Perspect. Biol., 1 (2009), a003384.

11. A. B. Goryachev and M. Leda, Many roads to symmetry breaking: molecular mechanisms and theoretical models of yeast cell polarity, Mol. Biol. Cell, 28 (2017), 370–380.

12. J. M. Johnson, M. Jin and D. J. Lew, Symmetry breaking and the establishment of cell polarity in budding yeast, Curr. Opin. Genet. Dev., 21 (2011), 740–746.

13. S. G. Martin, Spontaneous cell polarization: Feedback control of Cdc42 GTPase breaks cellular symmetry, BioEssays, 37 (2015), 1193–1201.

14. W. C. Lo, H. O. Park and C.S. Chou, Mathematical analysis of spontaneous emergence of cell Polarity, Bull. Math. Biol., 76 (2014), 1835–1865.

15. Y. Mori, A. Jilkine and L. Edelstein-Keshet, Wave-pinning and cell polarity from a bistable reaction-diffusion system, Biophys J., 94 (2008), 3684–3697.

16. A. Rätz and M. Röger, Turing instabilities in a mathematical model for signaling networks, J. Math. Biol., 65 (2012), 1215–1244.

17. A. Rätz and M. Röger, Symmetry breaking in a bulk–surface reaction–diffusion model for signalling networks, Nonlinearity, 27 (2014), 1805–1827.

18. A. B. Goryachev and A. V. Pokhilko, Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity, FEBS Lett., 582 (2008), 1437–1443.

19. W. R. Holmes, M. A. Mata and L. Edelstein-Keshet, Local perturbation analysis: A computational tool for biophysical reaction-diffusion models, Biophys. J., 108 (2015), 230–236.

20. M. Das, T. Drake, D. J. Wiley, P. Buchwald1, D. Vavylonis and F. Verde, Oscillatory dynamics of Cdc42 GTPase in the control of polarized growth, Science, 337 (2012), 239–243.

21. A. S. Howell, M. Jin, C. F.Wu, T. R. Zyla, T. C. Elston and D. J. Lew, Negative feedback enhances robustness in the yeast polarity establishment circuit, Cell, 149 (2012), 322–333.

22. M. E. Lee, W. C. Lo, K. E. Miller, C. S. Chou and H.-O. Park, Regulation of Cdc42 polarization by the Rsr1 GTPase and Rga1, a Cdc42 GTPase-activating protein, in budding yeast, J. Cell Sci., 128 (2015), 2106–2117.

23. S. Okada, M. Leda, J. Hanna, N. S. Savage, E. Bi and A. B. Goryachev, Daughter cell identity emerges from the interplay of Cdc42, septins, and exocytosis, Dev. Cell, 26 (2013), 148–161.

24. C. F. Wu and D. J. Lew, Beyond symmetry-breaking : competition and negative feedback in GTPase regulation, Trends Cell Biol., 23 (2013), 476–483.

25. B. Xu and P. C. Bressloff, A PDE-DDE model for cell polarization in fission yeast, SIAM J. Appl. Math., 76 (2016), 1844–1870.

26. A. M. Turing, The chemical basis of morphogenesis, Bull Math. Biol., 52 (1990), 153–197.

27. W. C. Lo, M. E. Lee, M. Narayan, C. S. Chou and H. O. Park, Polarization of diploid daughter cells directed by spatial cues and GTP hydrolysis of Cdc42 in budding yeast, PLoS One, 8 (2013), 1–14.

28. H. Smith, An introduction to delay differential equations with applications to the life sciences, Springer, 2011.

29. D. Cusseddu, L. Edelstein-Keshet, J. A. Mackenzie, S. Portet and A. Madzvamuse, A coupled bulk-surface model for cell polarisation, J. Theor. Biol., (2018), 0022–5193.

30. B. Klnder, T. Freisinger, R. Wedlich-Sldner, and E. Frey, GDI-Mediated cell polarization in yeast provides precise spatial and temporal control of Cdc42 signaling, PLoS Comput. Biol., 9 (2013), 1–12.

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved