Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Optimal dengue vaccination strategies of seropositive individuals

Department of Mathematics, Soongsil University, Sangdo-ro 369, Dongjak-gu, Seoul, 156-743, Republic of Korea

The dengue vaccine, CYD-TDV (Dengvaxia), has been licensed in 20 countries in Latin America and Southeast Asia beginning in 2015. In April 2018, the World Health Organization (WHO) advised that CYD-TDV should only be administered to individuals with a history of previous dengue virus infection. Using literature-based parameters, a mathematical model of dengue transmission and vaccination was developed to determine the optimal vaccination strategy while considering the effect of antibody-dependent enhancement (ADE). We computed the optimal vaccination rates under various vaccination costs and serological profiles. We observe that the optimal dengue vaccination rates for seropositive individuals are highest at the initial phase of a vaccination program, requiring intense effort at the early phase of an epidemic. The model shows that even in the presence of ADE, vaccination could reduce dengue incidence and provide population benefits. Specifically, optimal vaccination rates increase with a higher proportion of monotypic seropositive individuals, resulting in a higher impact of vaccination. Even in the presence of ADE and with limited vaccine efficacy, our work provides a population-level perspective on the potential merits of dengue vaccination.
  Article Metrics


1. M. Guzman and E. Harris, Dengue, Lancet., 385 (2015), 453–465.

2. A. Wilder-Smith, Risk of Dengue in Travelers: Implications for Dengue Vaccination, Curr. Infect. Dis. Rep., 20 (2018), 50.

3. S. Masyeni, B. Yohan, I. Somia, K. S. A. Myint, and R. T. Sasmono, Dengue infection in international travellers visiting Bali, Indonesia, J. Travel. Med., 25 (2018), 1–7.

4. A. Riddell and Z. O. E. Babiker, Imported dengue fever in East London: A 6-year retrospective observational study, J. Travel. Med., 24 (2017), 1–6.

5. S. Rabinowicz and E. Schwartz, Morbidity among Israeli paediatric travelers, J. Travel. Med., 24 (2017), 1–7.

6. A. Wilder-Smith, Serostatus-dependent performance of the first licensed dengue vaccine: Implications for travelers, J. Travel. Med., 25 (2018), 1–3.

7. O. J. Brady, P. W. Gething, S. Bhatt, J. P. Messina, J. S. Brownstein, A. G. Hoen, C. L. Moyes, A. W. Farlow, T. W. Scott and S. I. Hay, Refining the global spatial limits of dengue virus transmission by evidence-based consensus, PLoS. Negl. Trop. Dis., 6 (2012), e1760.

8. S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow, C. L. Moyes, J. M. Drake, J. S. Brownstein, A. G. Hoen, O. Sankoh, M. F. Myers, D. B. George, T. Jaenisch, G. R. Wint, C. P. Simmons, T. W. Scott, J. J. Farrar and S. I. Hay, The global distribution and burden of dengue, Nature., 496 (2013), 504–507.

9. E. S. Jentes, R. R. Lash, M. A. Johansson, T. M. Sharp, R. Henry, O. J. Brady, M. J. Sotir, S. I. Hay, H. S. Margolis and G. W. Brunette, Evidence-based risk assessment and communication: A new global dengue-risk map for travellers and clinicians, J. Travel. Med., 23 (2016), 1–5.

10. S. Halstead, Dengue, Lancet., 370 (2007), 1644–1652.

11. S. M. Lok, The interplay of dengue virus morphological diversity and human antibodies, Trends. Microbiol., 24 (2016), 284–293.

12. D. M. Morens, Antibody-dependent enhancement of infection and the pathogenesis of viral disease, Clin. Infect. Dis., 19 (1994), 500–512.

13. T. C. Pierson and M. S. Diamond, Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection, Expert. Rev. Mol. Med., 10 (2008), e12.

14. J. R. Stephenson, Understanding dengue pathogenesis: Implications for vaccine design, B. World. Health. Organ., 83 (2005), 308–314.

15. M. Aguiar, N. Stollenwerk and S. B. Halstead, The impact of the newly licensed dengue vaccine in endemic countries, PLoS. Negl. Trop. Dis., 10 (2016), e0005179.

16. The Lancet Infectious Diseases, The dengue vaccine dilemma, Lancet. Infect. Dis., 18 (2018): 123.

17. K. K. Ariën and A. Wilder-Smith, Dengue vaccine: Reliably determining previous exposure, Lancet. Glob. Health., 6 (2018), e830–e831.

18. Sanofi, Sanofi updates information on dengue vaccine, Available from: https://mediaroom.sanofi.com/en/press-releases/2017/sanofi-updates-information-on-dengue-vaccine/.

19. WHO, Updated Questions and Answers related to information presented in the Sanofi Pasteur press release on 30 November 2017 with regards to the dengue vaccine Dengvaxia, Available from: https://www.who.int/immunization/diseases/dengue/q_and_a_dengue_vaccine_dengvaxia/en/.

20. A. Wilder-Smith, K. S. Vannice, J. Hombach, J. Farrar and T. Nolan, Population perspectives and World Health Organization recommendations for CYD-TDV dengue vaccine, J. Infect. Dis., 214 (2016), 1796–1799.

21. The SAGE Working Group on Dengue Vaccines and WHO Secretariat, Background paper on dengue vaccines 2018, Available from: https://www.who.int/immunization/sage/meetings/2018/april/2_DengueBackgrPaper_SAGE_Apr2018.pdf?ua=1.

22. Dengue vaccine: WHO position paper, Wkly. Epidemiol. Rec., 36 (2018), 457–476.

23. A. Wilder-Smith, J. Hombach, N. Ferguson, M. Selgelid, K. O'Brien, K. Vannice, A. Barrett, E. Ferdinand, S. Flasche, M. Guzman, H. M. Novaes, L. C. Ng, P. G. Smith, P. Tharmaphornpilas, I. K. Yoon, A. Cravioto, J. Farrar and T. M. Nolan, Deliberations of the strategic advisory group of experts on immunization on the use of CYD-TDV dengue vaccine, Lancet. Infect. Dis., 19 (2018), e31–e38.

24. H. S. Rodrigues, M. T. T. Monteiro and D. F. M. Torres, Vaccination models and optimal control strategies to dengue, Math. Biosci., 247 (2014), 1–12.

25. S. B. Maier, X. Huang, E. Massad, M. Amaku, M. N. Burattini and D. Greenhalgh, Analysis of the optimal vaccination age for dengue in Brazil with a tetravalent dengue vaccine, Math. Biosci., 294 (2017), 15–32.

26. N. M. Ferguson, I. Rodríguez-Barraquer, I. Dorigatti, L. Mier-Y-Teran-Romero, D. J. Laydon and D. A. Cummings, Benefits and risks of the Sanofi-Pasteur dengue vaccine: Modeling optimal deployment, Science., 353 (2016), 1033–1036.

27. F. B. Agusto and M. A. Khan, Optimal control strategies for dengue transmission in Pakistan, Math. Biosci., 305 (2018), 102–121.

28. T. T. Zheng and L. F. Nie, Modelling the transmission dynamics of two-strain Dengue in the presence awareness and vector control, J. Theor. Biol., 443 (2018), 82–91.

29. C. Guo, Z. Zhou, Z. Wen, Y. Liu, C. Zeng, D. Xiao, M. Ou, Y. Han, S. Huang, D. Liu, X. Ye, X. Zou, J. Wu, H. Wang, E. Y. Zeng, C. Jing and G. Yang, Global Epidemiology of Dengue Outbreaks in 1990–2015: A Systematic Review and Meta-Analysis, Front. Cell. Infect. Microbiol., 7 (2017), 317.

30. S. B. Halstead and P. K. Russell, Protective and immunological behavior of chimeric yellow fever dengue vaccine, Vaccine., 34 (2016), 1643–1647.

31. E. A, Undurraga, M. Betancourt-Cravioto, J. Ramos-Castaneda, R. Martínez-Vega, J. Méndez-Galván, D. J. Gubler, M. G. Guzmán, S. B. Halstead, E. Harris, P. Kuri-Morales, R. Tapia-Conyer and D. S. Shepard, Economic and disease burden of dengue in Mexico, PLoS. Negl. Trop. Dis., 9 (2015), e0003547.

32. D. S. Shepard, E. A. Undurraga, Y. A. Halasa and Stanaway JD, The global economic burden of dengue: A systematic analysis, Lancet. Infect. Dis., 16 (2016), 935–941.

33. N. Pavia-Ruz, D. P. Rojas, S. Villanueva, P. Granja, A. Balam-May, I. M. Longini, M. E. Halloran, P. Manrique-Saide and H. Gómez-Dantés, Seroprevalence of Dengue Antibodies in Three Urban Settings in Yucatan, Mexico, Am. J. Trop. Med. Hyg., 98 (2018), 1202–1208.

34. M. L. Cafferata, A. Bardach, L. Rey-Ares, A. Alcaraz, G. Cormick, L. Gibbons, M. Romano, S. Cesaroni and S. Ruvinsky, Dengue epidemiology and burden of disease in Latin America and the Caribbean: A systematic review of the literature and meta-analysis, Value. Health. Region. Issues., 2 (2013), 347–356.

35. D. S. Shepard, L. Coudeville, Y. A. Halasa, B. Zambrano and G. H. Dayan, Economic impact of dengue illness in the Americas, Am. J. Trop. Med. Hyg., 84 (2011), 200–207.

36. E. Shim, Cost-effectiveness of dengue vaccination in Yucatan, Mexico using a dynamic dengue transmission model, PLoS. One., 12 (2017), e0175020.

37. E. Shim, Optimal strategies of social distancing and vaccination against seasonal influenza, Math. Biosci. Eng., 10 (2013), 1615–1634.

38. D. Aldila, T. Götz and E. Soewono, An optimal control problem arising from a dengue disease transmission model, Math. Biosci., 242 (2013), 9–16.

39. S. Lee and C. Castillo-Chavez, The role of residence times in two-patch dengue transmission dynamics and optimal strategies, J. Theor. Biol., 374 (2015), 152–164.

40. W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control, Springer Verlag, (1975).

41. S. Lenhart and J. Workman, Optimal Control Applied to Biological Models, Chapman and Hall/CRC, (2007).

42. R. J. Cox, K. A. Brokstad and P. L. Ogra, Influenza virus: Immunity and vaccination strategies. Comparison of the immune response to inactivated and live, attenuated influenza vaccines, Scand. J. Immunol., 59 (2004), 1–15.

43. E. Hansen and T. Day, Optimal control of epidemics with limited resources, J. Math. Biol., 62 (2011), 423–451.

44. E. A. Bakare, A. Nwagwo and E. Danso-Addo, Optimal control analysis of an SIR epidemic model with constant recruitment, Int. J. Appl. Math. Res., 3 (2014), 273–285.

45. L. S. Pontryagin, V. G. Boltyanskii and R. V. Gamkrelidze and E. F. Mishchenko, Mathematical Theory of Optimal Processes, Wiley, (1962).

46. R. L. M. Neilan, E. Schaefer and H. Gaff and K. R. Fister and S. Lenhart, Modeling optimal intervention strategies for cholera, Bull. Math. Biol., 72 (2010), 2004–2018.

47. P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.

48. S. T. R. Pinho, C. P. Ferreira and L. Esteva, F. R. Barreto, V. C. Morato e Silva and M. G. Teixeira, Modelling the dynamics of dengue real epidemics, Philos. Trans. Math. Phys. Eng. Sci., 368 (2010), 5679–5693.

49. R. P. Sanches and E. Massad, A comparative analysis of three different methods for the estimation of the basic reproduction number of dengue, Infect. Dis. Model., 1 (2016), 88–100.

50. I. Dorigatti, R. Aguas, C. A. Donnelly, B. Guy, L. Coudeville, N. Jackson, M. Saville and N. M. Ferguson, Modelling the immunological response to a tetravalent dengue vaccine from multiple phase-2 trials in Latin America and South East Asia, Vaccine., 33 (2015), 3746–3751.

51. I. Y. Amaya-Larios, R. A. Martinez-Vega, S. V. Mayer, M. Galeana-Hernández, A. Comas-García, K. J. Sepúlveda-Salinas, J. A. Falcón-Lezama, N. Vasilakis, and J. Ramos-Castañeda, Seroprevalence of neutralizing antibodies against dengue virus in two localities in the state of Morelos, Mexico, Am. J. Trop. Med. Hyg., 91 (2014), 1057–1065.

52. S. Sridhar, A. Luedtke, E. Langevin, M. Zhu, M. Bonaparte, T. Machabert, S. Savarino, B. Zambrano, A. Moureau, A. Khromava, Z. Moodie, T. Westling, C. Mascareñas, C. Frago, M. Cortés, D. Chansinghakul, F. Noriega, A. Bouckenooghe, J. Chen, S. P. Ng, P. B. Gilbert, S. Gurunathan and C. A. DiazGranados, Effect of Dengue Serostatus on Dengue Vaccine Safety and Efficacy, N. Engl. J. Med., 379 (2018), 327–340.

53. N. Imai and N. Ferguson, Targeting vaccinations for the licensed dengue vaccine: Considerations for serosurvey design, PLoS. One., 13 (2018), e0199450.

54. M. Aguiar, Dengue vaccination: A more ethical approach is needed, Lancet., 391 (2018), 1769–1770.

55. S. Hadinegoro, J. Arredondo-Garcia, M. Capeding, C. Deseda, T. Chotpitayasunondh, R. Dietze, H. I. Muhammad Ismail, H. Reynales, K. Limkittikul, D. M. Rivera-Medina, H. N. Tran, A. Bouckenooghe, D. Chansinghakul, M. Cortés, K. Fanouillere, R. Forrat, C. Frago, S. Gailhardou, N. Jackson, F. Noriega, E. Plennevaux, T. A. Wartel, B. Zambrano, and M. Saville, Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease, N. Engl. J. Med., 373 (2015), 1195–1206.

56. B. Gessner and A. Wilder-Smith, Estimating the public health importance of the CYD-tetravalent dengue vaccine: Vaccine preventable disease incidence and numbers needed to vaccinate, Vaccine., 34 (2016), 2397–2401.

57. L. Coudeville, N. Baurin, M. L'Azou and B. Guy, Potential impact of dengue vaccination: Insights from two large-scale phase III trials with a tetravalent dengue vaccine, Vaccine., 34 (2016), 6426–6435.

58. B. Adams and M. Boots, Modelling the relationship between antibody-dependent enhancement and immunological distance with application to dengue, J. Theor. Biol., 242 (2006), 337–346.

59. M. Ndeffo Mbah, D. Durham, J. Medlock and A. P. Galvani, Country- and age-specific optimal allocation of dengue vaccines, J. Theor. Biol., 342 (2014), 15–22.

60. M. Johansson, J. Hombach and D. Cummings, Models of the impact of dengue vaccines: A review of current research and potential approaches, Vaccine., 29 (2011), 5860–5868.

61. N. Honorio, R. Nogueira, C. Codeco, M. S. Carvalho, O. G. Cruz, A. Magalhães Mde, J. M. de Araújo, E. S. de Araújo, M. Q. Gomes, L. S. Pinheiro, C. da Silva Pinel and R. Lourenço-de-Oliveira, Spatial evaluation and modeling of Dengue seroprevalence and vector density in Rio de Janeiro, Brazil, PLoS. Negl. Trop. Dis., 3 (2009), e545.

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved