
Mathematical Biosciences and Engineering, 2019, 16(2): 862880. doi: 10.3934/mbe.2019040
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A new ensemble residual convolutional neural network for remaining useful life estimation
1 The State Key Laboratory of Digital Manufacturing Equipment & Technology, School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
2 School of Electronic Information & Communications, Huazhong University of Science & Technology, Wuhan, 430074, China
Received: , Accepted: , Published:
Special Issues: Optimization methods in Intelligent Manufacturing
References
1. M. Ma, C. Sun and X. F. Chen, Discriminative deep belief networks with ant colony optimization for health status assessment of machine, IEEE T. Instrum. Meas., 66 (2017), 3115–3125.
2. X. S. Si, W. B. Wang, C. H. Hu and D. H. Zhou, Remaining useful life estimationa review on the statistical data driven approaches. Eur. J. Oper. Res., 213 (2011), 1–14.
3. Y. G. Lei, N. P. Li, L. Guo, N. Li, T. Yan and J. Lin, Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mech. Syst. Signal. Pr., 104 (2018), 799–834.
4. K. Javed, R. Gouriveau and N. Zerhouni, A new multivariate approach for prognostics based on extreme learning machine and fuzzy clustering. IEEE Trans. Cybern., 45 (2015), 2626–2639.
5. J. B. Ali, B. ChebelMorello, L. Saidi, S. Malinowski and F. Fnaiech, Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network. Mech. Syst. Signal. Pr., 56 (2015), 150–172.
6. Y. G. Lei, N. P. Li and J. Lin, A new method based on stochastic process models for machine remaining useful life prediction. IEEE T. Instrum. Meas., 65 (2016), 2671–2684.
7. X. Y. Li, C. Lu, L. Gao, S. Q. Xiao and L. Wen, An Effective MultiObjective Algorithm for Energy Efficient Scheduling in a RealLife Welding Shop. IEEE T. Ind. Inform., 14, 12(2018), 5400–5409.
8. X. Y. Li, L. Gao, Q. Pan, L. Wan and K. M. Chao, An effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshop. IEEE Trans. Syst., (2018), doi: 10.1109/TSMC.2018.2881686.
9. Y. Zhou, W. C. Yi, L. Gao and X. Y. Li, Adaptive differential evolution with sorting crossover rate for continuous optimization problems. IEEE Trans. Cybern., 47 (2017), 27422753.
10. N. Daroogheh, A. Baniamerian, N. Meskin N and K. Khorasani, Prognosis and health monitoring of nonlinear systems using a hybrid scheme through integration of PFs and neural networks. IEEE Trans. Syst., 47 (2017), 1990–2004.
11. R. Q. Huang, L. F. Xi, X. L. Li, C. R. Liu, H. Qiu and J. Lee, Residual life predictions for ball bearings based on selforganizing map and back propagation neural network methods. Mech. Syst. Signal Pr., 21 (2017), 193–207.
12. R. Khelif, B. ChebelMorello, S. Malinowski, E. Laajili, F. Fnaiech and N. Zerhouni, Direct remaining useful life estimation based on support vector regression. IEEE T. Ind. Electron., 64 (2017), 2276–2285.
13. C. Ordóñez, F. S. Lasheras, J. RocaPardiñas and F. J. de Cos Juez, A hybrid ARIMASVM model for the study of the remaining useful life of aircraft engines. J. Comput. Appl. Math., 346 (2019), 184–191.
14. H. Z. Huang, H. K. Wang, Y. F. Li, L. Zhang and Z. Liu, Support vector machine based estimation of remaining useful life: Current research status and future trends. J. Mech. Sci. Technol., 29 (2015), 151–163.
15. J. Wu, Y. H. Su, Y. W. Cheng, X. Y. Shao, C. Deng and C. Liu, Multisensor information fusion for remaining useful life prediction of machining tools by adaptive network based fuzzy inference system. Appl. Soft. Comput., 68, (2018), 13–23.
16. C. Chen, B. Zhang, G. Vachtsevanos and M. Orchard, Machine condition prediction based on adaptive neurofuzzy and highorder particle filtering. IEEE T. Ind. Electron., 58 (2011), 4353–4364.
17. V. Mathew, T. Toby, V. Singh, B. M. Rao and M. G. Kumar, Prediction of Remaining Useful Lifetime (RUL) of turbofan engine using machine learning. 2017 IEEE International Conference on Circuits and Systems (ICCS), 306–311.
18. J. L. Wang, J. Zhang and X. X. Wang, A data driven cycle time prediction with feature selection in a semiconductor wafer fabrication system. IEEE T. Semiconduct. M., 31 (2018), 173–182.
19. R. Zhao, R. Q. Yan, Z. H. Chen, K. Z. Mao, P. Wang and R. X. Gao, Deep learning and its applications to machine health monitoring. Mech. Syst. Signal. Pr., 115 (2019), 213–237.
20. J. Deutsch and D. He, Using deep learningbased approach to predict remaining useful life of rotating components. IEEE Trans. Syst., 48 (2018), 11–20.
21. J. Deutsch, M. He and D. He, Remaining useful life prediction of hybrid ceramic bearings using an integrated deep learning and particle filter approach. Appl. Sci., 7 (2017), 649.
22. C. Zhang, P. Lim, A. K. Qin and K. C. Tan, Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics. IEEE Trans. Neural. Netw. Learn. Syst., 28 (2018), 2306–2318.
23. L. Wen, L. Gao and X. Y. Li, A new deep transfer learning based on sparse autoencoder for fault diagnosis. IEEE Trans. Syst., 49 (2019), 136–144.
24. H. H. Yan, J. F. Wan, C. H. Zhang, S. L. Tang, Q. S. Hua and Z. R. Wang, Industrial big data analytics for prediction of remaining useful life based on deep learning. IEEE Access, 6 (2018), 17190–17197.
25. Y. Y. Zhang, X. Y. Li, L. Gao, L. H. Wang and L. Wen, Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning. J. Manuf. Syst., 48 (2018), 34–50.
26. F. O. Heimes, Recurrent neural networks for remaining useful life estimation. International Conference on Prognostics and Health Management (PHM 2008), 1–6.
27. Y. T. Wu, M. Yuan, S. P. Dong, L. Lin and Y. Q. Liu, Remaining useful life estimation of engineered systems using vanilla LSTM neural networks. Neurocomputing, 275 (2018), 167–179.
28. J. L. Wang, J. Zhang and X. X. Wang, Bilateral LSTM: A twodimensional long shortterm memory model with multiply memory units for shortterm cycle time forecasting in reentrant manufacturing systems. IEEE T. Ind. Inform., 14 (2018), 748–758.
29. W. N. Lu, Y. P. Li, Y. Cheng, D. S. Meng, B. Liang and P. Zhou, Early fault detection approach with deep architectures. IEEE T. Instrum. Meas., 67 (2018), 1679–1689.
30. L. Wen, X. Y. Li and L. Gao, A new convolutional neural network based datadriven fault diagnosis method. IEEE T. Ind. Electron., 65 (2018), 5990–5998.
31. G. S. Babu, P. L. Zhao and X. L. Li, Deep convolutional neural network based regression approach for estimation of remaining useful life. Int. Conf. Database Syst. Adv. Appl., (2016), 214–228.
32. X. Li, Q. Ding and J. Q. Sun, Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab. Eng. Syst. Safe., 172 (2018), 1–11.
33. L. Ren, Y. Q. Sun, H. Wang and L. Zhang, Prediction of bearing remaining useful life with deep convolution neural network. IEEE Access, 6 (2018), 13041–13049.
34. L. Guo, Y. G. Lei, N. P. Li, T. Yan and N. B. Li, Machinery health indicator construction based on convolutional neural networks considering trend burr. Neurocomputing, 292 (2018), 142–150.
35. A. Z. Hinchi and M. Tkiouat, Rolling element bearing remaining useful life estimation based on a convolutional longshortterm memory network. Procedia. Comput. Sci., 127 (2018), 123–132.
36. K. M. He, X. Y. Zhang, S. Q. Ren SQ and J. Sun, Delving deep into rectifiers: Surpassing humanlevel performance on ImageNet classification. Proceedings of the IEEE International Conference on Computer Vision, (2015), 1026–1034.
37. K. M. He, X. Y. Zhang, S. Q. Ren, Ren SQ, J. Sun, Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 770–778.
38. T. W. Rauber, F. Assis Boldt and F. M. Varejão, Heterogeneous feature models and feature selection applied to bearing fault diagnosis. IEEE T. Ind. Electron., 62 (2015), 637–646.
39. P. Lim, C. K. Goh and K. C. Tan, A time window neural network based framework for Remaining Useful Life estimation. 2016 International Joint Conference on Neural Networks (IJCNN), 1746–1753.
40. Y. LeCun and Y. Bengio, Convolutional networks for images, speech, and time series, In: The handbook of brain theory and neural networks, MIT Press Cambridge, MA, USA, 1995.
41. Y. Bengio, A. Courville and P. Vincent, Representation learning: A review and new perspectives. IEEE T. Pattern. Anal., 35 (2013), 1798–1828.
42. M. Xiao, L. Wen, X. Li and L. Gao, Modeling of the feedmotor transient current in end milling by using varyingcoefficient model. Math. Probl. Eng., 2015.
43. T. Han, D. Jiang, Q. Zhao Q, L. Wang and K. Yin, Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery. Trans. I. Meas. Control., (2017), 1–13.
44. PHM08 Challenge Data Set, NASA Data Repository, 2018. Available from: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognosticdatarepository/#turbofan.
45. S. Zheng, K. Ristovski, A. Farahat A and C. Gupta, Long shortterm memory network for remaining useful life estimation. 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), 88–95.
46. S. K. Singh, S. Kumar, J. P. Dwivedi, A novel soft computing method for engine RUL prediction. Multimed. Tools Appl., (2017), 1–23.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)