Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Extinction and uniform persistence in a microbial food web with mycoloop: limiting behavior of a population model with parasitic fungi

1 Division of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Visayas, Miag-ao
2 Department of Mathematics, National Tsing-Hua University, Hsinchu 300, Tawain
3 Institute of Mathematics, University of the Philippines, C.P. Garcia St., U.P. Campus, Diliman, 1101 Quezon City, Philippines

Special Issues: Resource Explicit Population Models

It is recently known that parasites provide a better picture of an ecosystem, gaining attention in theoretical ecology. Parasitic fungi belong to a food chain between zooplankton and inedible phytoplankton, called mycoloop. We consider a chemostat model that incorporates a single mycoloop, and analyze the limiting behavior of solutions, adding to previous work on steady-state analysis. By way of persistence theory, we establish that a given species survives depending on the food web configuration and the nutrient level. Moreover, we conclude that the model predicts coexistence under bounded nutrient levels.
  Article Metrics

Keywords uniform persistence; local and global stability; chemostat; mycoloop; phytoplankton; zooplankton; parasitic fungi

Citation: Alexis Erich S. Almocera, Sze-Bi Hsu, Polly W. Sy. Extinction and uniform persistence in a microbial food web with mycoloop: limiting behavior of a population model with parasitic fungi. Mathematical Biosciences and Engineering, 2019, 16(1): 516-537. doi: 10.3934/mbe.2019024


  • 1. M. Kagami, A. de Bruin, B. W. Ibelings and E. Van Donk, Parasitic chytrids: their effects on phytoplankton communities and food web dynamics, Hydrobiologia, 578 (2007): 113–129.
  • 2. M. Kagami, N. R. Helmsing and E. Van Donk, Parasitic chytrids could promote copepod survival by mediating material transfer from inedible diatoms, Hydrobiologia, 659 (2011): 49–54.
  • 3. M. Kagami, T. Miki and G. Takimoto, Mycoloop: chytrids in aquatic food webs, Front. Microbiol., 5 (2014): 166.
  • 4. M. Kagami, E. von Elert, B. W. Ibelings, A. de Bruin and E. Van Donk, The parasitic chytrid, zygorhizidium, facilitates the growth of the cladoceran zooplankter, daphnia, in cultures of the inedible alga, asterionella, Proceedings of the Royal Society of London B: Biological Science, 274 (2007): 1561–1566.
  • 5. A. M. Kuris, R. F. Hechinger, J. C. Shaw, K. L. Whitney, L. Aguirre-Macedo, C. A. Boch, A. P. Dobson, E. J. Dunham, B. L. Fredensborg, T. C. Huspeni, J. Lorda, L. Mababa, F. T. Mancini, A. B. Mora, M. Pickering, N. L. Talhouk, M. E. Torchin and K. D. Lafferty, Ecosystem energetic implications of parasite and free-living biomass in three estuaries, Nature, 454 (2008): 515.
  • 6. K. D. Lafferty, S. Allesina, M. Arim, C. J. Briggs, G. De Leo, A. P. Dobson, J. A. Dunne, P. T. J. Johnson, A. M. Kuris, D. J. Marcogliese, N. D. Martinez, J. Memmott, P. A. Marquet, J. P. McLaughlin, E. A. Mordecai, M. Pascual, R. Poulin, D. W. Thieltges, Parasites in food webs: the ultimate missing links, Ecol. Lett., 11 (2008): 533–546.
  • 7. D. J. Marcogliese and D. K. Cone, Food webs: a plea for parasites, Trends Ecol. Evol., 12 (1997): 320–325.
  • 8. I. P. Martines, H. V. Kojouharov and J. P. Grover, A chemostat model of resource competition and allelopathy, Appl. Math. Comput., 215 (2009): 573–582.
  • 9. T. Miki, G. Takimoto and M. Kagami, Roles of parasitic fungi in aquatic food webs: a theoretical approach, Freshwater Biol., 56 (2011): 1173–1183.
  • 10. C. J. Rhodes and A. P. Martin, The influence of viral infection on a plankton ecosystem undergoing nutrient enrichment, J. Theor. Biol., 265 (2010): 225–237.
  • 11. B. K. Singh, J. Chattopadhyay and S. Sinha, The role of virus infection in a simple phytoplankton zooplankton system, J. Theor. Biol., 231 (2004): 153–166.
  • 12. H. L. Smith and H. R. Thieme, Dynamical systems and population persistence, volume 118, American Mathematical Society, 2011.
  • 13. H. L. Smith and P. Waltman, The theory of the chemostat: dynamics of microbial competition, volume 13, Cambridge university press, 1995.
  • 14. R. E. H. Smith and J. Kalff, Size-dependent phosphorus uptake kinetics and cell quota in phytoplankton, J. Phycol., 18 (1982): 275–284.
  • 15. U. Sommer, R. Adrian, L. D. S. Domis, J. J. Elser, U. Gaedke, B. Ibelings, E. Jeppesen, M. L¨urling, J. C. Molinero, W. M. Mooij, E. van Donk and M. Winder, Beyond the plankton ecology group (peg) model: mechanisms driving plankton succession, Annu. Rev. Ecol. Evol. Syst., 43 (2012): 429–448.
  • 16. H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM J. Math. Anal., 24 (1993): 407–435.


This article has been cited by

  • 1. Thijs Frenken, Takeshi Miki, Maiko Kagami, Dedmer B. Van de Waal, Ellen Van Donk, Thomas Rohrlack, Alena S. Gsell, The potential of zooplankton in constraining chytrid epidemics in phytoplankton hosts, Ecology, 2019, 10.1002/ecy.2900

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved