Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Mathematical modelling of cardiac pulse wave reflections due to arterial irregularities

1. Imperial College London, South Kensington Campus, London SW72AZ, United Kingdom
2. Ecole normale supérieure Paris-Saclay, 61 Avenue du Président Wilson, Cachan 94230, France

This research aims to model cardiac pulse wave reflections due to the presence of arterial irregularities such as bifurcations, stiff arteries, stenoses or aneurysms. When an arterial pressure wave encounters an irregularity, a backward reflected wave travels upstream in the artery and a forward wave is transmitted downstream. The same process occurs at each subsequent irregularity, leading to the generation of multiple waves. An iterative algorithm is developed and applied to pathological scenarios to predict the pressure waveform of the reflected wave due to the presence of successive arterial irregularities. For an isolated stenosis, analysing the reflected pressure waveform gives information on its severity. The presence of a bifurcation after a stenosis tends do diminish the amplitude of the reflected wave, as bifurcations' reflection coefficients are relatively small compared to the ones of stenoses or aneurysms. In the case of two stenoses in series, local extrema are observed in the reflected pressure waveform which appears to be a characteristic of stenoses in series along an individual artery. Finally, we model a progressive change in stiffness in the vessel's wall and observe that the less the gradient stiffness is important, the weaker is the reflected wave.

  Figure/Table
  Supplementary
  Article Metrics
Download full text in PDF

Export Citation

Article outline

Copyright © AIMS Press All Rights Reserved