
Mathematical Biosciences and Engineering, 2018, 15(3): 739764. doi: 10.3934/mbe.2018033
Article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Dynamics of a Filippov epidemic model with limited hospital beds
a. Institute of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, China
b. Department of Applied Mathematics, Xi'an Jiaotong University, Xi'an 710049, China
c. Laboratory of Mathematical Parallel Systems, Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
Received: , Accepted: , Published:
References
[1] A. Abdelrazec,J. Bélair,C. Shan, Modeling the spread and control of dengue with limited public health resources, Math. Biosci., 271 (2016): 136145.
[2] M. J. Aman and F. Kashanchi, Zika virus: A new animal model for an arbovirus, PLOS Negl Trop Dis, 10 (2016), e0004702.
[3] M. Bernardo, C. Budd, A. R. Champneys and et al., Piecewisesmooth Dynamical Systems: Theory and Applications, Springer, 2008.
[4] F. Bizzarri,A. Colombo,F. Dercole, Necessary and sufficient conditions for the noninvertibility of fundamental solution matrices of a discontinuous system, SIAM J Appl. Dyn. Syst., 15 (2016): 84105.
[5] Y. Cai,Y. Kang,M. Banerjee, A stochastic SIRS epidemic model with infectious force under intervention strategies, J Differ Equations, 259 (2015): 74637502.
[6] N. S. Chong,B. Dionne,R. Smith, An avianonly Filippov model incorporating culling of both susceptible and infected birds in combating avian influenza, J Math. Biol., 73 (2016): 751784.
[7] A. Colombo,F. Dercole, Discontinuity induced bifurcations of nonhyperbolic cycles in nonsmooth systems, SIAM J Appl. Dyn. Syst., 9 (2010): 6283.
[8] F. Della Rossa,F. Dercole, Generalized boundary equilibria in ndimensional Filippov systems: The transition between persistence and nonsmoothfold scenarios, Physica D, 241 (2012): 19031910.
[9] F. Della Rossa,F. Dercole, Generic and generalized boundary operating points in piecewiselinear (discontinuous) control systems, 51st IEEE Conference on Decision and Control, null (2012): 77147719.
[10] F. Dercole, Border collision bifurcations in the evolution of mutualistic interactions, Int. J. Bifurcat. Chaos, 15 (2005): 21792190.
[11] F. Dercole,F. Della Rossa,A. Colombo, Two degenerate boundary equilibrium bifurcations in planar Filippov systems, SIAM J Appl. Dyn. Syst., 10 (2011): 15251553.
[12] F. Dercole,R. Ferrière,A. Gragnani, Coevolution of slowfast populations: Evolutionary sliding, evolutionary pseudoequilibria and complex Red Queen dynamics, P. Roy. Soc. BBiol. Sci., 273 (2006): 983990.
[13] F. Dercole,A. Gragnani,Y. A. Kuznetsov, Numerical sliding bifurcation analysis: An application to a relay control system, IEEE T CircuitsI, 50 (2003): 10581063.
[14] F. Dercole,A. Gragnani,S. Rinaldi, Bifurcation analysis of piecewise smooth ecological models, Theor. Popul. Biol., 72 (2007): 197213.
[15] F. Dercole,Y. A. Kuznetsov, SlideCont: An Auto97 driver for bifurcation analysis of Filippov systems, ACM Math. Software., 31 (2005): 95119.
[16] F. Dercole,M. Stefano, Detection and continuation of a border collision bifurcation in a forest fire model, Appl. Math. Comput., 168 (2005): 623635.
[17] M. Di Bernardo,C. J. Budd,A. R. Champneys, Bifurcations in nonsmooth dynamical systems, SIAM Rev., 50 (2008): 629701.
[18] M. Di Bernardo,P. Kowalczyk,A. Nordmark, Bifurcations of dynamical systems with sliding: Derivation of normalform mappings, Physica D, 170 (2002): 175205.
[19] C. A. Donnelly,M. C. Fisher,C. Fraser, Epidemiological and genetic analysis of severe acute respiratory syndrome, Lancet Infect. Dis., 4 (2004): 672683.
[20] S. EchevarríaZuno,J. M. MejíaAranguré,A. J. MarObeso, Infection and death from influenza a H1N1 virus in mexico: a retrospective analysis, Lancet, 374 (2010): 20722079.
[21] A. F. Filippov and F. M. Arscott, Differential Equations with Discontinuous Righthand Sides: Control Systems, Springer, 1988.
[22] C. Fraser,C. A. Donnelly S. Cauchemez, Pandemic potential of a strain of influenza a (H1N1): early findings, Science, 324 (2009): 15571561.
[23] J. L. Goodman, Studying "secret serums" toward safe, effective ebola treatments, New Engl. J Med., 371 (2014): 10861089.
[24] L. V. Green, How many hospital beds, Inquiry: J. Health Car., 39 (2002): 400412.
[25] M. Guardia,S. J. Hogan,T. M. Seara, An analytical approach to codimension2 sliding bifurcations in the dryfriction oscillator, SIAM J Appl. Dyn. Syst., 9 (2010): 769798.
[26] M. Guardia,T. M. Seara,M. A. Teixeira, Generic bifurcations of low codimension of planar filippov systems, J. Differ. Equations, 250 (2011): 19672023.
[27] A. B. Gumel,S. Ruan,T. Day, Modelling strategies for controlling SARS outbreaks, P. Roy. Soc. BBiol. Sci., 271 (2004): 22232232.
[28] V. Křivan, On the gause predatorprey model with a refuge: A fresh look at the history, J. of Theor. Biol., 274 (2011): 6773.
[29] Y. A. Kuznetsov,S. Rinaldi,A. Gragnani, Oneparameter bifurcations in planar filippov systems, Int. J. Bifurcat. Chaos, 13 (2003): 21572188.
[30] I. M. Longini,A. Nizam,S. Xu, Containing pandemic influenza at the source, Science, 309 (2005): 10831087.
[31] M. E. M. Meza,A. Bhaya,E. Kaszkurewicz, Threshold policies control for predatorprey systems using a control liapunov function approach, Theor. Popul. Biol., 67 (2005): 273284.
[32] W. Qin,S. Tang,C. Xiang, Effects of limited medical resource on a Filippov infectious disease model induced by selection pressure, Appl. Math. Comput., 283 (2016): 339354.
[33] Z. Sadique,B. Lopman,B. S. Cooper, Costeffectiveness of ward closure to control outbreaks of norovirus infection in United Kingdom National Health Service Hospitals, J. Infect. Dis., 213 (2016): S19S26.
[34] C. Shan,Y. Yi,H. Zhu, Nilpotent singularities and dynamics in an SIR type of compartmental model with hospital resources, J Differ Equations, 260 (2016): 43394365.
[35] C. Shan,H. Zhu, Bifurcations and complex dynamics of an sir model with the impact of the number of hospital beds, J Differ Equations, 257 (2014): 16621688.
[36] X. Sun, Y. Xiao, S. Tang and et al., Early HAART initiation may not reduce actual reproduction number and prevalence of MSM infection: Perspectives from coupled withinand betweenhost modelling studies of Chinese MSM populations, PloS one, 11 (2016), e0150513.
[37] S. Tang,J. Liang,Y. Xiao, Sliding bifurcations of filippov two stage pest control models with economic thresholds, SIAM J Appl. Dyn. Syst., 72 (2012): 10611080.
[38] S. Tang, Y. Xiao, Y. Yang and et al., Communitybased measures for mitigating the 2009 H1N1 pandemic in china, PloS One, 5 (2010), e10911.
[39] V. I. Utkin, Sliding Modes and Their Applications in Variable Structure Systems, Mir, Moscow, 1978.
[40] A. Wang and Y. Xiao, Sliding bifurcation and global dynamics of a Filippov epidemic model with vaccination, Int. J. Bifurcat. Chaos, 23 (2013), 1350144, 32pp.
[41] W. Wang, Backward bifurcation of an epidemic model with treatment, Math. Biosci., 201 (2006): 5871.
[42] WHO Ebola Response Team, Ebola virus disease in west africathe first 9 months of the epidemic and forward projections, New Engl. J Med., 371 (2014): 14811495.
[43] World health organization, World health statistics, 20052015.
[44] Y. Xiao, S. Tang and J. Wu, Media impact switching surface during an infectious disease outbreak, Sci. Rep. UK, 5 (2015).
[45] X. Zhang,X. Liu, Backward bifurcation and global dynamics of an SIS epidemic model with general incidence rate and treatment, Nonlinear AnalReal, 10 (2009): 565575.
© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)