Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

The potential impact of a prophylactic vaccine for Ebola in Sierra Leone

. Rhodes College, Department of Mathematics & Computer Science, 2000 N. Parkway, Memphis, TN 38112, USA

The 2014 outbreak of Ebola virus disease (EVD) in West Africa was multinational and of an unprecedented scale primarily affecting the countries of Guinea, Liberia, and Sierra Leone. One of the qualities that makes EVD of high public concern is its potential for extremely high mortality rates (up to 90%). A prophylactic vaccine for ebolavirus (rVSV-ZEBOV) has been developed, and clinical trials show near-perfect efficacy. We have developed an ordinary differential equations model that simulates an EVD epidemic and takes into account (1) transmission through contact with infectious EVD individuals and deceased EVD bodies, (2) the heterogeneity of the risk of becoming infected with EVD, and (3) the increased survival rate of infected EVD patients due to greater access to trained healthcare providers. Using fitted parameter values that closely simulate the dynamics of the 2014 outbreak in Sierra Leone, we utilize our model to predict the potential impact of a prophylactic vaccine for the ebolavirus using various vaccination strategies including ring vaccination. Our results show that an rVSV-ZEBOV vaccination coverage as low as 40% in the general population and 95% in healthcare workers will prevent another catastrophic outbreak like the 2014 outbreak from occurring.

  Article Metrics

Keywords Ebolavirus; prophylactic vaccine; vaccine coverage; ring vaccination; ordinary differential equations; epidemiology; population dynamics; Sierra Leone

Citation: Erin N. Bodine, Connor Cook, Mikayla Shorten. The potential impact of a prophylactic vaccine for Ebola in Sierra Leone. Mathematical Biosciences and Engineering, 2018, 15(2): 337-359. doi: 10.3934/mbe.2018015


  • [1] M. Ajelli, S. Merler, L. Fumanelli, A. Pastore, Y. Piontti, N. E. Dean, I. M. Longini Jr. , M. E. Halloran and A. Vespignani, Spatiotemporal dynamics of the Ebola epidemic in Guinea and implications for vaccination and disease elimination: A computational modeling analysis BMC Medicine 14(2016), p130.
  • [2] C. L. Althaus, Estimating the reproduction number of ebola virus (EBOV) during the 2014 outbreak in West Africa PLOS Currents Outbreaks (2014), Edition 1.
  • [3] E. J. Amundsen,H. Stigum,J. A. Rottingen,O. O. Aalen, Definition and estimation of an actual reproduction number describing past infectious disease transmission: application to HIV epidemics among homosexual men in Denmark, Norway, and Sweden, Epidemiol Infect, 132 (2004): 1139-1149.
  • [4] D. Bernoulli,S. Blower, An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it, Reviews in Medical Virology, 14 (2004): 275-288.
  • [5] S. M. Blower,E. N. Bodine,K. Grovit-Ferbas, Predicting the potential public health impact of Disease-Modifying HIV Vaccines in South Africa: The problem of subtypes, Curr Drug Targets Infect Disord, 5 (2005): 179-192.
  • [6] S. M. Blower,H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example, Int Stat Rev, 62 (1994): 229-243.
  • [7] C. Browne,H. Gulbudak,G. Webb, Modeling contact tracing in outbreaks with application to Ebola, J Theor Biol, 384 (2015): 33-49.
  • [8] S. Calvignac-Spencer, J. M. Schulze, F. Zickmann and B. Y. Renard, Clock rooting further demonstrates that Guinea 2014 EBOV is a member of the Zaïre Lineage, PLOS Currents Outbreaks (2014), Edition 1.
  • [9] CDC, 2014 Ebola outbreak in West Africa -Case Counts, Centers for Disease Control and Prevention (2016), http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/case-counts.html.
  • [10] CDC, Ebola survivors, Centers for Disease Control (2016), http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/survivors.html.
  • [11] CDC, Ebola virus disease -signs and symptoms, Centers for Disease Control (2015), http://www.cdc.gov/vhf/ebola/symptoms/index.html.
  • [12] CDC, Outbreak chronology: Ebola virus disease, Centers for Disease Control (2015), http://www.cdc.gov/vhf/ebola/outbreaks/history/chronology.html.
  • [13] G. Chowell,N. W. Hengartner,C. Castillo-Chavez,P. W. Fenimore,J. M. Hyman, The basic reproductive number of Ebola and the effects of public health measures: The cases of Congo and Uganda, J Theor Biol, 229 (2004): 119-126.
  • [14] G. Chowell,M. Kiskowski, Modeling ring-vaccination strategies to control ebola virus disease epidemics, Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases, null (2016): 71-87.
  • [15] A. Christie,G. J. Daview-Wayne,T. Cordier-Lasalle,D. J. Blackley,A. S. Laney,D. E. Williams,S. A. Shinde,M. Badio,T. Lo,S. E. Mate,J. T. Ladner,M. R. Wiley,J .R. Kugelman,G. Palacios,M. R. Holbrook,K. B. Janosko,E . de Wit,N. van Doremalen,V. J. Munster,J. Pettitt,R. J. Schoepp,L. Verhenne,I. Evlampidou,K. K. Kollie,S. B. Sieh,A. Gasasira,F. Bolay,F. N. Kateh,T. G. Nyenswah,K. M. De Cock, Possible sexual transmission of Ebola virus-Liberia, 2015, MMWR Morb Mortal Wkly Rep, 64 (2015): 479-481.
  • [16] CIA, The CIA World Factbook, Central Intelligence Agency, United States (2015), https://www.cia.gov/library/publications/resources/the-world-factbook/.
  • [17] A. Cintrón-Arias,C. Castillo-Chávez,L. M. A. Bettencourt,A. L. Lloyd,H. T. Banks, The estimation of the effective reproduction number from disease outbreak data, Math Biosci Eng, 6 (2009): 261-282.
  • [18] G. F. Deen,B. Knust,N. Broutet,F. R. Sesay,P. Formenty,C. Ross,A. E. Thorson,T. A. Massaquoi,J. E. Marrinan,E. Ervin,A. Jambai,S. L. R. McDonald,K. Bernstein,A. H. Wurie,M. S. Dumbuya,N. Abad,B. Idriss,T. Wi,S. D. Bennett,T. Davies,F. K. Ebrahim,E. Meites,D. Naidoo,S. Smith,A. Banerjee,B. R. Erickson,A. Brault,K. N. Durski,J. Winter,T. Sealy,S. T. Nichol,M. Lamunu,U. Ströher,O. Morgan,F. Sahr, Ebola RNA Persistence in Semen of Ebola Virus Disease Survivors --Preliminary Report, N Engl J Med, null (2015).
  • [19] E. de Wit, H. Feldmann and V. J. Munsters, Tackling Ebola: New insights into prophylactic and therapeutic intervention strategies, Genome Med 3(2011).
  • [20] M. G. Dixon,I. J. Schafer, Ebola Viral disease outbreak --West Africa, 2014, MMRW Morb Mortal Wkly Rep, 63 (2014): 548-551.
  • [21] T. S. Do,Y. S. Lee, Modeling the spread of Ebola, Osong Public Health and Research Perspectives, 7 (2016): 43-48.
  • [22] S. F. Dowell,R. Mukunu,T. G. Ksiazek,A. S. Khan,P. E. Rollin,C. J. Peters, Transmission of Ebola hemorrhagic fever: A study of risk factors in family members, Kikwit, Democratic Republic of the Congo, 1995, J Infect Dis, 179 (1999): S87-S91.
  • [23] P. van den Driessche,J. Watmough, Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci, 180 (2002): 29-48.
  • [24] M. Eichner,K. Dietz, Transmission potential of smallpox: Estimates based on detailed data from an outbreak, Amer Journal of Epidem, 158 (2003): 110-117.
  • [25] M. Eichner,S. F. Dowell,N. Firese, Incubation period of ebola hemorrhagic virus subtype zaire, Osong Public Heath Res Perspect, 2 (2011): 3-7.
  • [26] D. Fisman, E. Khoo and A. Tuite, Early epidemic dynamics of the West African 2014 Ebola outbreak: Estimates derived with a simple two-parameter model PLOS Currents Outbreaks (2014), Edition 1.
  • [27] T. C. Germann, K. Kadau, I. M. Longini Jr. and C. A. Macken, Mitigation strategies for pandemic influenza in the United States PNAS (2006).
  • [28] R. F. Grais,M. J. Ferrari,C. Dubray,O. N. Bjornstad,G. T. Grenfell,A. Djibo,F. Fermon,P. J. Guerin, Estimating transmission intensity for a measles epidemic in Niamey, Niger: Lessons for intervention, Transactions of the Royal Society of Tropical Medicine and Hygiene, 100 (2006): 867-873.
  • [29] J. M. Heffernan,R. J. Smith,L. M. Wahl, Perspectives on the basic reproductive ratio, J Roy Soc Interface, 2 (2005): 281-293.
  • [30] J. M. Heffernan,M. J. Keeling, Implications of vaccination and waning immunity, Proc R Soc B, 276 (2009): 2071-2080.
  • [31] A. M. Henao-Restrepo,A. Camacho,I. M. Longini,C. H. Watson,W. J. Edmunds,M. Egger,M. W. Carroll,N. E. Dean,I. Diatta,M. Doumbia,B. Draguez,S. Duraffour,G. Enwere,R. Grais,S. Gunther,P.-S. Gsell,S. Hossmann,S. V. Watle,M. K. Kondé,S. Kéïta,S. Kone,E. Kuisma,M. M. Levine,S. Mandal,T. Mauget,G. Norheim,X. Riveros,A. Soumah,S. Trelle,A. S. Vicari,J.-A. Rottingen,M.-P. Kieny, Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: Final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!), The Lancet, 389 (2017): 505-518.
  • [32] A. M. Henao-Restrepo,I. M. Longini,M. Egger,N. E. Dean,W. J. Edmunds,A. Camacho,M. W. Carroll,M. Doumbia,B. Draguez,S. Duraffour,G. Enwere,R. Grais,S. Gunther,S. Hossmann,M. K. Kondé,S. Kone,E. Kuisma,M. M. Levine,S. Mandal,G. Norheim,X. Riveros,A. Soumah,S. Trelle,A. S. Vicari,C. H. Watson,S. Kéïta,M. P. Kieny,J.-A. Rottingen, Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: Interim results from the Guinea ring vaccination cluster-randomised trial, The Lancet, 386 (2015): 857-866.
  • [33] B. S. Hewlett,R. P. Amola, Cultural contexts of Ebola in Northern Uganda, Emerg Infect Dis, 9 (2003): 1242-1248.
  • [34] M. Ibrahim,L. Alexander,C. Shy,S. Farr, UNC Department of Epidemiology: Incidence vs. Prevalence, Epidemiologic Research & Information Center Notebook, null (1999): 1-5.
  • [35] A. Kahn, M. Naveed, M. Dur-e-Ahmad and M. Imran, Estimating the basic reproductive ratio for the Ebola outbreak in Liberia and Sierra Leone Infect Dis Poverty 4(2015), p13.
  • [36] M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals Princeton University Press, 2008.
  • [37] M. J. Keeling,M. E. J. Woolhouse,R. M. May,G. Davies,B. T. Grenfell, Modelling vaccination strategies against foot-and-mouth disease, Nature, 421 (2003): 136-142.
  • [38] Y. Kinfu,M. R. Dal Poz,H. Mercer,D. B. Evans, The health worker shortage in Africa: Are enough physicians and nurses being trained?, Bull World Health Organ, 87 (2009): 225-230.
  • [39] N. M. Kudoyarova-Zubavichene,N. N. Sergeyev,A. A. Chepurnov,S. V. Netesov, Preparation and Use of Hyperimmune Serum for Prophylaxis and Therapy of Ebola Virus Infections, J Infect Dis, 179 (1999): 218-223.
  • [40] J. Legrand,R. F. Brais,P. Y. Boelle,A. J. Valleron,A. Flahault, Understanding the dynamics of Ebola epidemics, Epidemiol Infect, 135 (2007): 610-621.
  • [41] E. M. Leroy,P. Rouquet,P. Formenty,S. Souquiere,A. Kilbourne,J.-M. Froment,M. Bermejo,S. Smit,W. Karesh,R. Swanepoel,S. R. Zaki,P. E. Rollin, Multiple Ebola virus transmission events and rapid decline of Central African wildlife, Science, 303 (2004): 387-390.
  • [42] Y. Liu,J. Wang,S. Liu,J. Du,L. Wang,W. Gu,Y. Xu,S. Zuo,E. Xu,Z. An, Introduction of inactivated poliovirus vaccine leading into the polio eradication endgame strategic plan; Hangzhou, China, 2010-2014, Vaccine, 35 (2017): 1281-1286.
  • [43] S. Marino,I. B. Hogue,C. J. Ray,D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J Theor Biol, 254 (2008): 178-196.
  • [44] M. D. McKay,R. J. Beckman,W. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21 (1979): 239-245.
  • [45] M. I. Meltzer,C. Y. Atkins,S. Santibanez,B. Knust,B. W. Petersen,E. D. Ervin,S. T. Nichol,I. K. Damon,M. L. Washington, Estimating the future number of cases in the Ebola Epidemic --Liberia and Sierra Leone, 2014-2015, MMWR Morb Mortal Wkly Rep, null (2014).
  • [46] S. Merler, M. Ajelli, L. Fumanelli, S. Parlamento, A. Pastore y Piontti, N. E. Dean, G. Putoto, D. Carraro, I. M. Longini Jr. , M. E. Halloran and A. Vespignani, Containing Ebola at the source with ring vaccination PLOS Neglected Tropical Diseases 10(2016), e0005093.
  • [47] J. Müller,B. Schönfisch,M. Kirkilionis, Ring vaccination, Journal of Mathematical Biology, 41 (2000): 143-171.
  • [48] Medicins Sans Frontieres/Doctors Without Borders, Ebola (2015), http://www.doctorswithoutborders.org/our-work/medical-issues/ebola.
  • [49] H. Nishiura, Correcting the actual reproduction number: A simple method to estimate $R_0$ from early epidemic growth data, Int J Environ Res Public Health, 7 (2010): 291-302.
  • [50] A. Pandey,K. E. Atkins,J. Medlock,N. Wenzel,J. P. Townsend,J. E. Childs,T. G. Nyenswah,M. L. Ndeffo-Mbah,A. P. Galvani, Strategies for containing Ebola in West Africa, Science, 346 (2014): 991-995.
  • [51] J. Prescott,T. Bushmaker,R. Fischer,K. Miazgowicz,S. Judson,V. J. Munster, Postmortem stability of Ebola virus, Emerg Infect Dis, 21 (2015): 856-859.
  • [52] C. M. Rivers, E. T. Lofgren, M. Marathe, S. Eubank and B. L. Lewis, Modeling the impact of interventions on an epidemic of Ebola in sierra leone and liberia PLOS Currents Outbreaks (2014), Edition 2.
  • [53] D. Salem,R. Smith?, A mathematical model of ebola virus disease: Using sensitivity analysis to determine effective intervention targets, Proceedings of SummerSim-SCSC, null (2016): 16-23.
  • [54] E. E. Salpeter,S. R. Salpeter, Mathematical mode for the epidemiology of tuberculosis, with estimates of the reproductive number and infection-delay function, Am J Epidemiol, 142 (1998): 398-406.
  • [55] R. Smith?, Modelling Disease Ecology with Mathematics American Institute of Mathematical Sciences, 2008.
  • [56] L. R. Stanberry, Clinical trials of prophylactic and therapeutic herpes simplex virus vaccines, Herpes, null (2004): 161A-169A.
  • [57] United Nations, Making A Difference the Global Ebola Response: Outlook 2015 United Nations, (2015), http://ebolaresponse.un.org/outlook-2015.
  • [58] United Nations Global Ebola Response, UN Mission for Ebola Emergency Response (UNMEER) United Nations, (2015), http://ebolaresponse.un.org/un-mission-ebola-emergency-response-unmeer.
  • [59] G. Webb, C. Browne, X. Huo, O. Seydi, M. Seydi and P. Magal, A model of the 2014 Ebola epidemic in West Africa with contact tracing PLoS Currents Outbreaks (2015), Edition 1.
  • [60] G. Webb,C. Browne, A model of the Ebola epidemics in West Africa incorporating age of infection, J Biol Dyn, 10 (2016): 18-30.
  • [61] WHO, WHO coordinating vaccination of contacts to contain Ebola flare-up in Guinea, World Health Organization, (2016), http://www.who.int/features/2016/ebola-contacts-vaccination/en/.
  • [62] WHO, One year into the Ebola epidemic: A deadly tenacious and unforgiving virus, World Health Organization, (2015), http://www.who.int/csr/disease/ebola/one-year-report/introduction/en/.
  • [63] WHO, Ebola outbreak 2014 -present: How the outbreak and WHO's response unfolded, World Health Organization, (2016), http://who.int/csr/disease/ebola/response/phases/en/.
  • [64] WHO, Ebola virus disease, World Health Organization, (2015), http://www.who.int/mediacentre/factsheets/fs103/en/.
  • [65] WHO, WHO: Ebola Response Roadmap World Health Organization, (2014), http://www.who.int/csr/resources/publications/ebola/response-roadmap/en/.
  • [66] WHO, Ebola Virus Disease Outbreak Response Plan in West Africa World Health Organization, (2014), http://www.who.int/mediacentre/factsheets/fs103/en/.
  • [67] WHO Ebola Response Team, Ebola Virus Disease in West Africa -The First 9 Months of the Epidemic and Forward Projections, N Engl J Med, 371 (2014): 1481-1495.


This article has been cited by

  • 1. Berge Tsanou, Jean Mbaro Saman Lubuma, Arsène Jaurès Ouemba Tassé, Hervé Michel Tenkam, Dynamics of host-reservoir transmission of Ebola with spillover potential to humans, Electronic Journal of Qualitative Theory of Differential Equations, 2018, 14, 1, 10.14232/ejqtde.2018.1.14
  • 2. Karima Kabli, Soumia El Moujaddid, Khadija Niri, Abdessamad Tridane, Cooperative system analysis of the Ebola virus epidemic model, Infectious Disease Modelling, 2018, 3, 145, 10.1016/j.idm.2018.09.004
  • 3. T. Berge, A. J. Ouemba Tassé, H. M. Tenkam, J. Lubuma, Mathematical modeling of contact tracing as a control strategy of Ebola virus disease, International Journal of Biomathematics, 2018, 1850093, 10.1142/S1793524518500936
  • 4. Lee Worden, Rae Wannier, Nicole A. Hoff, Kamy Musene, Bernice Selo, Mathias Mossoko, Emile Okitolonda-Wemakoy, Jean Jacques Muyembe Tamfum, George W. Rutherford, Thomas M. Lietman, Anne W. Rimoin, Travis C. Porco, J. Daniel Kelly, Townsend Peterson, Projections of epidemic transmission and estimation of vaccination impact during an ongoing Ebola virus disease outbreak in Northeastern Democratic Republic of Congo, as of Feb. 25, 2019, PLOS Neglected Tropical Diseases, 2019, 13, 8, e0007512, 10.1371/journal.pntd.0007512
  • 5. Debkusum Mukhopadhyay, Samares Pal, Efficacy of Isolation as a Control Strategy for Ebola Outbreaks in Combination with Vaccination, Biophysical Reviews and Letters, 2019, 1, 10.1142/S179304801950005X
  • 6. A. Mhlanga, Dynamical analysis and control strategies in modelling Ebola virus disease, Advances in Difference Equations, 2019, 2019, 1, 10.1186/s13662-019-2392-x
  • 7. Hamed Agahi, A Control Approach for Monotone Systems with Multi-valued Characteristics: Application to An Ebola Virus Model, European Journal of Control, 2020, 10.1016/j.ejcon.2020.02.011
  • 8. Ravi Potluri, Amit Kumar, Vikalp Maheshwari, Charlie Smith, Valerie Oriol Mathieu, Kerstin Luhn, Benoit Callendret, Hitesh Bhandari, Malaya Kumar Sahoo, Impact of prophylactic vaccination strategies on Ebola virus transmission: A modeling analysis, PLOS ONE, 2020, 15, 4, e0230406, 10.1371/journal.pone.0230406

Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved