Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Optimal time to intervene: The case of measles child immunization

. Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava, Slovakia

The recent measles outbreaks in US and Germany emphasize the importance of sustaining and increasing vaccination rates. In Slovakia, despite mandatory vaccination scheme, decrease in the vaccination rates against measles has been observed in recent years. Different kinds of intervention at the state level, like a law making vaccination a requirement for school entry or education and advertising seem to be the only strategies to improve vaccination coverage. This study aims to analyze the economic effectiveness of intervention in Slovakia. Using real options techniques we determine the level of vaccination rate at which it is optimal to perform intervention. We represent immunization rate of newborns as a stochastic process and intervention as a one-period jump of this process. Sensitivity analysis shows the importance of early intervention in the population with high initial average vaccination coverage. Furthermore, our numerical results demonstrate that the less certain we are about the future development of the immunization rate of newborns, the more valuable is the option to intervene.

  Article Metrics


[1] J. Arino,C. Bauch,F. Brauer,S. M. Driedger,A. L. Greer,S. M. Moghadas,N. J. Pizzi,B. Sander,A. Tuite,P. Van Den Driessche, Pandemic influenza: Modelling and public health perspectives, Math Biosci Eng, 8 (2011): 1-20.

[2] C. T. Bauch,D. J. Earn, Vaccination and the theory of games, Proceedings of the National Academy of Sciences of the United States of America, 101 (2004): 13391-13394.

[3] R. A. Brealey,S. C. Myers,F. Allen, null, Corporate Finance, Auflage, New York, 2006.

[4] B. Buonomo,A. d'Onofrio,D. Lacitignola, Modeling of pseudo-rational exemption to vaccination for seir diseases, Journal of Mathematical Analysis and Applications, 404 (2013): 385-398.

[5] Z. Chladná,E. Moltchanova, Incentive to vaccinate: A synthesis of two approaches, Acta Mathematica Universitatis Comenianae, 84 (2015): 283-296.

[6] T. E. Copeland, V. Antikarov and T. E. Copeland, Real Options: A Practitioner's Guide, Texere New York, 2001.

[7] A. K. Dixit,R. S. Pindyck, null, Investment Under Uncertainty, Princeton university press, 1994.

[8] A. d'Onofrio, P. Manfredi and P. Poletti, The interplay of public intervention and private choices in determining the outcome of vaccination programmes, PLoS ONE, 7 (2012), e45653.

[9] Analýza epidemiologickej situácie a činnosti odborov epidemiológie v Slovenskej republike. (In Slovak), 2005-2014, URL http://www.epis.sk/InformacnaCast/Publikacie/VyrocneSpravy.aspx.

[10] H. Hudečková,S. Straka,M. Avdičová,S. Rusnáková, Health and economic benefits of mandatory regular vaccination in Slovakia. IV. Measles, rubella and mumps (In Slovak), Epidemiologie, mikrobiologie, imunologie: Časopis Společnosti pro epidemiologii a mikrobiologii České lékařské společnosti JE Purkyně, 50 (2001): 31-35.

[11] J. C. Hull, Options, Futures, and Other Derivatives, Pearson Education India, 2006.

[12] M. J. Keeling,P. Rohani, null, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, Princeton, NJ, 2008.

[13] P. Manfredi and A. d'Onofrio, Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, Springer Science & Business Media, 2013.

[14] Public Health Act, Slovakia 2007, Public Health Protection Act, Slovakia 2007 (In Slovak: Zákon č. 355/2007 Z. z. o ochrane, podpore a rozvoji verejného zdravia a o zmene a doplnení niektorých zákonov), URL http://www.zakonypreludi.sk/zz/2007-355.

[15] A. Shefer,P. Briss,L. Rodewald,R. Bernier,R. Strikas,H. Yusuf,S. Ndiaye,S. Wiliams,M. Pappaioanou,A. R. Hinman, Improving immunization coverage rates: An evidence-based review of the literature, Epidemiologic Reviews, 21 (1999): 96-142.

[16] P. J. Smith, S. G. Humiston, E. K. Marcuse, Z. Zhao, C. G. Dorell, C. Howes and B. Hibbs, Parental delay or refusal of vaccine doses, childhood vaccination coverage at 24 months of age, and the health belief model, Public Health Reports, 126 (2011), p135.

[17] E. Vynnycky,R. White, null, An Introduction to Infectious Disease Modelling, Oxford University Press, 2010.

[18] WHO 2012, Global measles and rubella strategic plan : 2012-2020. The World Health Organization, URL http://apps.who.int/iris/bitstream/10665/44855/1/9789241503396_eng.pdf.

[19] WHO 2015, Monitoring and surveillance. Data, statistics and graphics. The World Health Organization, URL http://www.who.int/immunization/monitoring_surveillance/data/en/.

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved