Sex-biased prevalence in infections with heterosexual, direct, and vector-mediated transmission: a theoretical analysis

  • Received: 30 October 2016 Accepted: 20 January 2017 Published: 01 February 2018
  • MSC : Primary: 92D30; Secondary: 34C99

  • Three deterministic Kermack-McKendrick-type models for studying the transmission dynamics of an infection in a two-sex closed population are analyzed here. In each model it is assumed that infection can be transmitted through heterosexual contacts, and that there is a higher probability of transmission from one sex to the other than vice versa. The study is focused on understanding whether and how this bias in transmission reflects in sex differences in final attack ratios (i.e. the fraction of individuals of each sex that eventually gets infected). In the first model, where the other two transmission modes are not considered, the attack ratios (fractions of the population of each sex that will eventually be infected) can be obtained as solutions of a system of two nonlinear equations, that has a unique solution if the net reproduction number exceeds unity. It is also shown that the ratio of attack ratios depends solely on the ratio of gender-specific susceptibilities and on the basic reproductive number of the epidemic $ \mathcal{R}_0 $, and that the gender-specific final attack-ratio is biased in the same direction as the gender-specific susceptibilities. The second model allows also for infection transmission through direct, non-sexual, contacts. In this case too, an analytical expression is derived from which the attack ratios can be obtained. The qualitative results are similar to those obtained for the previous model, but another important parameter for determining the value of the ratio between the attack ratios in the two sexes is obtained, the relative weight of direct vs. heterosexual transmission (namely, ρ). Quantitatively, the ratio of final attack ratios generally will not exceed 1.5, if non-sexual transmission accounts for most transmission events (ρ ≥ 0.6) and the ratio of gender-specific susceptibilities is not too large (say, 5 at most). The third model considers vector-borne, instead of direct transmission. In this case, we were not able to find an analytical expression for the final attack ratios, but used instead numerical simulations. The results on final attack ratios are actually quite similar to those obtained with the second model. It is interesting to note that transient patterns can differ from final attack ratios, as new cases will tend to occur more often in the more susceptible sex, while later depletion of susceptibles may bias the ratio in the opposite direction. The analysis of these simple models, despite their lack of realism, can help in providing insight into, and assessment of, the potential role of gender-specific transmission in infections with multiple modes of transmission, such as Zika virus (ZIKV), by gauging what can be expected to be seen from epidemiological reports of new cases, disease incidence and seroprevalence surveys.

    Citation: Andrea Pugliese, Abba B. Gumel, Fabio A. Milner, Jorge X. Velasco-Hernandez. Sex-biased prevalence in infections with heterosexual, direct, and vector-mediated transmission: a theoretical analysis[J]. Mathematical Biosciences and Engineering, 2018, 15(1): 125-140. doi: 10.3934/mbe.2018005

    Related Papers:

  • Three deterministic Kermack-McKendrick-type models for studying the transmission dynamics of an infection in a two-sex closed population are analyzed here. In each model it is assumed that infection can be transmitted through heterosexual contacts, and that there is a higher probability of transmission from one sex to the other than vice versa. The study is focused on understanding whether and how this bias in transmission reflects in sex differences in final attack ratios (i.e. the fraction of individuals of each sex that eventually gets infected). In the first model, where the other two transmission modes are not considered, the attack ratios (fractions of the population of each sex that will eventually be infected) can be obtained as solutions of a system of two nonlinear equations, that has a unique solution if the net reproduction number exceeds unity. It is also shown that the ratio of attack ratios depends solely on the ratio of gender-specific susceptibilities and on the basic reproductive number of the epidemic $ \mathcal{R}_0 $, and that the gender-specific final attack-ratio is biased in the same direction as the gender-specific susceptibilities. The second model allows also for infection transmission through direct, non-sexual, contacts. In this case too, an analytical expression is derived from which the attack ratios can be obtained. The qualitative results are similar to those obtained for the previous model, but another important parameter for determining the value of the ratio between the attack ratios in the two sexes is obtained, the relative weight of direct vs. heterosexual transmission (namely, ρ). Quantitatively, the ratio of final attack ratios generally will not exceed 1.5, if non-sexual transmission accounts for most transmission events (ρ ≥ 0.6) and the ratio of gender-specific susceptibilities is not too large (say, 5 at most). The third model considers vector-borne, instead of direct transmission. In this case, we were not able to find an analytical expression for the final attack ratios, but used instead numerical simulations. The results on final attack ratios are actually quite similar to those obtained with the second model. It is interesting to note that transient patterns can differ from final attack ratios, as new cases will tend to occur more often in the more susceptible sex, while later depletion of susceptibles may bias the ratio in the opposite direction. The analysis of these simple models, despite their lack of realism, can help in providing insight into, and assessment of, the potential role of gender-specific transmission in infections with multiple modes of transmission, such as Zika virus (ZIKV), by gauging what can be expected to be seen from epidemiological reports of new cases, disease incidence and seroprevalence surveys.


    加载中
    [1] [ C. L. Althaus,N. Low, How Relevant Is Sexual Transmission of Zika Virus?, PLOS Med., 13 (2016): 1-3.
    [2] [ M.-C. Boily,R. F. Baggaley,L. Wang,B. Masse,R. G. White,R. J. Hayes,M. Alary, Heterosexual risk of HIV-1 infection per sexual act: Systematic review and meta-analysis of observational studies, Lancet Infect. Dis., 9 (2009): 118-129.
    [3] [ R. B. Brooks,M. P. Carlos,R. A. Myers,M. Grace White,T. Bobo-Lenoci,D. Aplan,D. Blythe,K. A. Feldman, Likely Sexual Transmission of Zika Virus from a Man with No Symptoms of Infection --Maryland, 2016, MMWR Morb Mortal Wkly Rep, 65 (2016): 915-916.
    [4] [ CDC, Hepatitis A Questions and Answers for the Public, URL https://www.cdc.gov/hepatitis/hav/afaq.htm.
    [5] [ F. C. Coelho,B. Durovni,V. Saraceni,C. Lemos,C. T. Codeco,S. Camargo,L. M. de Carvalho,L. Bastos,D. Arduini,D. A. M. Villela,M. Armstrong, Higher incidence of Zika in adult women than adult men in Rio de Janeiro suggests a significant contribution of sexual transmission from men to women, Int. J. Infect. Dis., 51 (2016): 128-132.
    [6] [ W. D. Davidson,S Slavinski,K. Komoto,J. Rakeman, Suspected Female-to-Male Sexual Transmission of Zika Virus-New York City, 2016, MMWR Morb Mortal Wkly Rep, 65 (2016): 716-717.
    [7] [ O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, New York: John Wiley and Sons, 2000.
    [8] [ M. R. Duffy,T.-H. Chen,W. T. Hancock,A. M. Powers,J. L. Kool,R. S. Lanciotti,M. Pretrick,M. Marfel,S. Holzbauer,C. Dubray,L. Guillaumot,A. Griggs,M. Bel,A. J. Lambert,J. Laven,O. Kosoy,A. Panella,B. J. Biggerstaff,M. Fischer,E. B. Hayes, Zika virus outbreak on Yap Island, Federated States of Micronesia., N. Engl. J. Med., 360 (2009): 2536-2543.
    [9] [ N. M. Ferguson, Z. M. Cucunubá, I. Dorigatti, G. L. Nedjati-Gilani, C. A. Donnelly, M.- G. Basáñez, P. Nouvellet and J. Lessler, Countering the Zika epidemic in Latin America, Science (80-. )., 353 (2016), 353-354, URL http://www.sciencemag.org/cgi/content/full/science.aag0219/DC1.
    [10] [ K. Fonseca, B. Meatherall, D. Zarra, M. Drebot, J. MacDonald, K. Pabbaraju, S. Wong, P.Webster, R. Lindsay and R. Tellier, First case of zika virus infection in a returning canadian traveler, Am. J. Trop. Med. Hyg., 91 (2014), 1035-1038, URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228871/.
    [11] [ P. J. Fos, null, Epidemiology Foundations: The Science of Public Health, Jossey-Bass, San Francisco, 2011.
    [12] [ E. B. Hayes, Zika Virus Outside Africa, Emerg. Infect. Dis., 15 (2009), 1347-1350, URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819875/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819875/.
    [13] [ W. O. Kermack,A. G. McKendrick, A contributions to the mathematical theory of epidemics, Proc. R. Soc. London A, 115 (1927): 700-721.
    [14] [ A. J. Kucharski,S. Funk,R. M. Eggo,H.-P. Mallet,W. J. Edmunds,E. J. Nilles, Transmission dynamics of zika virus in island populations: A modelling analysis of the 2013-14 french polynesia outbreak, PLoS Negl. Trop. Dis, 10 (2016): e0004726.
    [15] [ W. D. Z. Lopes, J. D. Rodriguez, F. A. Souza, T. R. dos Santos, R. S. dos Santos, W. M. Rosanese, W. R. Z. Lopes, C. A. Sakamoto and A. J. da Costa, Sexual transmission of Toxoplasma gondii in sheep, Vet. Parasitol., 195 (2013), 47-56, URL http://linkinghub.elsevier.com/retrieve/pii/S0304401713000083.
    [16] [ G. MacDonald, The analysis of equilibrium in malaria, Trop Dis Bull, 49 (1952): 813-829.
    [17] [ J. M. Mansuy,C. Pasquier,M. Daudin,S. Chapuy-Regaud,N. Moinard,C. Chevreau,J. Izopet,C. Mengelle,L. Bujan, Zika virus in semen of a patient returning from a non-epidemic area, Lancet Infect. Dis., 16 (2016): 894-895.
    [18] [ J. C. Miller, Mathematical models of SIR disease spread with combined non-sexual and sexual transmission routes, Infect. Dis. Model., 2 (2017), 35-55, URL http://linkinghub.elsevier.com/retrieve/pii/S2468042716300203.
    [19] [ R. Pellissier,A. Rousselot, Enquete serologique sur l'incidence des virus neurol ropes chez quelques singes de l'Afrique Equatoriale Francaise (French) [A Serological Investigation of the Incidence of Neurotropic Viruses in Certain Monkeys of French Equatorial Africa], Bull. Société Pathol. Exot., 47 (1954): 228-231.
    [20] [ A. J. Rodriguez-Morales, A. C. Bandeira and C. Franco-Paredes, The expanding spectrum of modes of transmission of Zika virus: A global concern, Ann. Clin. Microbiol. Antimicrob. , 15 (2016), 13, URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776405/.
    [21] [ R. Ross, The Prevention of Malaria, Churchill, London, 1911.
    [22] [ Q. Zhang, K. Sun, M. Chinazzi, A. Pastore-Piontti, N. E. Dean, D. P. Rojas, S. Merler, D. Mistry, P. Poletti, L. Rossi, M. Bray, M. E. Halloran, I. M. Longini and A. Vespignani, Spread of Zika virus in the Americas, Proc. Natl. Acad. Sci. (2017).
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1173) PDF downloads(660) Cited by(1)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog