
Mathematical Biosciences and Engineering, 2017, 14(5&6): 13991406. doi: 10.3934/mbe.2017072
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
On the continuity of the function describing the times of meeting impulsive set and its application
. School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, China
Received: , Accepted: , Published:
The properties of the limit sets of orbits of planar impulsive semidynamic system strictly depend on the continuity of the function, which describes the times of meeting impulsive sets. In this note, we will show a more realistic counter example on the continuity of this function which has been proven and widely used in impulsive dynamical system and applied in life sciences including population dynamics and disease control. Further, what extra condition should be added to guarantee the continuity of the function has been addressed generally, and then the applications and shortcomings have been discussed when using the properties of this function.
References
[1] E. M. Bonotto,M. Federson, Limit sets and the Poincare Bendixson theorem in impulsive semidynamical systems, J. Differ. Equ., 244 (2008): 23342349.
[2] K. Ciesielski, On semicontinuity in impulsive dynamical systems, Bulletin of The Polish Academy of Sciences Mathematics, 52 (2004): 7180.
[3] G. B. Ermentrout,N. Kopell, Multiple pulse interactions and averaging in systems of coupled neural oscillators, J. Math. Biol., 29 (1991): 195217.
[4] R. A. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961): 445466.
[5] G. Gabor, The existence of viable trajectories in the statedependent impusive systems, Nonlinear Anal. TMA, 72 (2010): 38283836.
[6] G. Gabor, Viable periodic solutions in statedependent impulsive problems, Collect. Math., 66 (2015): 351365.
[7] P. Goel,B. Ermentrout, Synchrony, stability, and firing patterns in pulsecoupled oscillators, Physica D, 163 (2002): 191216.
[8] M. Z. Huang,J. X. Li,X. Y. Song,H. J. Guo, Modeling impulsive injections of insulin: Towards aritificial pancreas, SIAM J. Appl. Math., 72 (2012): 15241548.
[9] S. K. Kaul, On impulsive semidynamical systems, J. Math. Anal. Appl., 150 (1990): 120128.
[10] J. H. Liang,S. Y. Tang,J. J. Nieto,R. A. Cheke, Analytical methods for detecting pesticide switches with evolution of pesticide resistance, Math. Biosci., 245 (2013): 249257.
[11] B. Liu, Y. Tian and B. L. Kang, Dynamics on a Holling Ⅱ predatorprey model with statedependent impulsive control, International J. Biomath. , 5 (2012), 1260006, 18 pp.
[12] L. F. Nie,Z. D. Teng,L. Hu, The dynamics of a chemostat model with state dependent impulsive effects, Int. J. Bifurcat. Chaos, 21 (2011): 13111322.
[13] J. C. Panetta, A mathematical model of periodically pulsed chemotherapy: Tumor recurrence and metastasis in a competitive environment, Bull. Math. Biol., 58 (1996): 425447.
[14] B. Shulgin,L. Stone,Z. Agur, Pulse vaccination strategy in the SIR epidemic model, Bull. Math. Biol., 60 (1998): 11231148.
[15] L. Stone,B. Shulgin,Z. Agur, Theoretical examination of the pulse vaccination policy in the SIR epidemic model, Math. Comput. Model., 31 (2000): 207215.
[16] K. B. Sun,Y. Tian,L. S. Chen,A. Kasperski, Nonlinear modelling of a synchronized chemostat with impulsive state feedback control, Math. Comput. Modelling, 52 (2010): 227240.
[17] S. Y. Tang,R. A. Cheke, Statedependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences, J. Math. Biol., 50 (2005): 257292.
[18] S. Y. Tang,R. A. Cheke, Models for integrated pest control and their biological implications, Math. Biosci., 215 (2008): 115125.
[19] S. Y. Tang,L. S. Chen, Modelling and analysis of integrated pest management strategy, Discrete Contin. Dyn. Syst. B, 4 (2004): 759768.
[20] S. Y. Tang,J. H. Liang,Y. S. Tan,R. A. Cheke, Threshold conditions for interated pest management models with pesticides that have residual effects, J. Math. Biol., 66 (2013): 135.
[21] S. Y. Tang, W. H. Pang, R. A. Cheke and J. H. Wu, Global dynamics of a statedependent feedback control system, Advances in Difference Equations, 2015 (2015), 70pp.
[22] S. Y. Tang,G. Y. Tang,R. A. Cheke, Optimum timing for integrated pest management: Modeling rates of pesticide application and natural enemy releases, J. Theor. Biol., 264 (2010): 623638.
[23] S. Y. Tang,B. Tang,A. L. Wang,Y. N. Xiao, Holling Ⅱ predatorprey impulsive semidynamic model with complex Poincare map, Nonlinear Dynamics, 81 (2015): 15751596.
[24] S. Y. Tang,Y. N. Xiao,L. S. Chen,R. A. Cheke, Integrated pest management models and their dynamical behaviour, Bull. Math. Biol., 67 (2005): 115135.
Copyright Info: © 2017, Sanyi Tang, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)