Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

A mathematical model for the seasonal transmission of schistosomiasis in the lake and marshland regions of China

a. College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, China
b. College of Mathematics and Physics, Xinjiang Agriculture University, Urumqi, Xinjiang 830052, China
c. Department of Mathematics, University of Miami, Coral Gables, FL 33146, USA
d. Complex Systems Research Center, Shanxi University, Taiyuan, Shanxi 030006, China
e. Department of Mathematics, Yuncheng University, Yuncheng, Shanxi 044000, China

Schistosomiasis, a parasitic disease caused by Schistosoma Japonicum, is still one of the most serious parasitic diseases in China and remains endemic in seven provinces, including Hubei, Anhui, Hunan, Jiangsu, Jiangxi, Sichuan, and Yunnan. The monthly data of human schistosomiasis cases in Hubei, Hunan, and Anhui provinces (lake and marshland regions) released by the Chinese Center for Disease Control and Prevention (China CDC) display a periodic pattern with more cases in late summer and early autumn. Based on this observation, we construct a deterministic model with periodic transmission rates to study the seasonal transmission dynamics of schistosomiasis in these lake and marshland regions in China. We calculate the basic reproduction number $R_{0}$, discuss the dynamical behavior of solutions to the model, and use the model to fit the monthly data of human schistosomiasis cases in Hubei. We also perform some sensitivity analysis of the basic reproduction number $R_{0}$ in terms of model parameters. Our results indicate that treatment of at-risk population groups, improving sanitation, hygiene education, and snail control are effective measures in controlling human schistosomiasis in these lakes and marshland regions.

  Article Metrics

Keywords Seasonal schistosomiasis model; basic reproduction number; extinction; uniform persistence

Citation: Yingke Li, Zhidong Teng, Shigui Ruan, Mingtao Li, Xiaomei Feng. A mathematical model for the seasonal transmission of schistosomiasis in the lake and marshland regions of China. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1279-1299. doi: 10.3934/mbe.2017066


  • [1] S. Altizer,A. Dobson,P. Hosseini,P. Hudson,M. Pascual,P. Rohani, Seasonality and the dynamics of infectious diseases, Ecol. Lett., 9 (2006): 467-484.
  • [2] J. Aron,I. Schwartz, Seasonality and period-doubling bifurcations in an epidemic model, J. Theor. Biol., 110 (1984): 665-679.
  • [3] N. Bacaër, Approximation of the basic reprodution number $R_{0}$ for a vectir-borne diseases with a periodic vector population, Bull. Math. Biol., 69 (2007): 1067-1091.
  • [4] N. Bacaër,S. Guernaoui, The epdemic threshold of vector-borne sdiseas with seasonality, J. Math. Biol., 53 (2006): 421-436.
  • [5] C. Castillo-Chavez,Z. Feng,D. Xu, A schistosomiasis model with mating structure and time delay, Math. Biolsci., 211 (2008): 333-341.
  • [6] Centers for Disease Control and Prevention, Parasites – Schistosomiasis. Updated on November 7,2012. Available from: http://www.cdc.gov/parasites/schistosomiasis/biology.html.
  • [7] Centers for Disease Control and Prevention, Schistosomiasis Infection. Updated on May 3,2016. Available from: http://www.cdc.gov/dpdx/schistosomiasis/index.html.
  • [8] Z. Chen,L. Zou,D. Shen,W. Zhang,S. Ruan, Mathematical modelling and control of Schistosomiasis in Hubei Province, China, Acta Trop., 115 (2010): 119-125.
  • [9] Chinese Center for Disease Control and Prevention, Schisosomiasis. Updated on November 11,2012. Available from: http://www.ipd.org.cn/Article/xxjs/hzdw/201206/2431.html.
  • [10] Chinese Center for Disease Control and Prevention/The Data-center of China Public Health Science, Schisosomiasis. Available from: http://www.phsciencedata.cn/Share/ky_sjml.jsp?id=5912cbb2-c84b-4bca-a554-7c234072a34c&show=0.
  • [11] E. Chiyak,W. Garira, Mathematical analysis of the transmission dynamics of schistosomiasis in the humansnail hosts, J. Biol. Syst., 17 (2009): 397-423.
  • [12] D. Coon, Schistosomiasis: overview of the history, biology, clinicopathology, and laboratory diagnosis, Clin. Microbiol. Newsl., 27 (2005): 163-168.
  • [13] G. Davis,W. Wu,G. Williams,H. Liu,S. Lu,H. Chen,F. Zheng,D. Mcmanus,J. Guo, Schistosomiasis japonica intervention study on Poyang Lake, China: The snail's tale, Malacologia., 49 (2006): 79-105.
  • [14] M. Diaby,A. Iggidr,M. Sy,A. Sène, Global analysis of a schistosomiasis infection model with biological control, Appl. Math. Comput., 246 (2014): 731-742.
  • [15] D. Engels,L. Chitsulo,A. Montresor,L. Savioli, The global epidemiological situation of schistosomiasis and new approaches to control and research, Acta Trop., 82 (2002): 139-146.
  • [16] Z. Feng,A. Eppert,F. Milner,D. Minchella, Estimation of parameters governing the transmission dynamics of schistosomes, Appl. Math. Lett., 17 (2004): 1105-1112.
  • [17] Z. Feng,C. Li,F. Milner, Schistosomiasis models with density dependence and age of infection in snail dynamics, Math. Biosci., 177 (2002): 271-286.
  • [18] S. Gao,Y. Liu,Y. Luo,D. Xie, Control problems of mathematical model for schistosomiasis transmission dynamics, Nonlinear Dyn., 63 (2011): 503-512.
  • [19] W. Garira,D. Mathebula,R. Netshikweta, A mathematical modelling framework for linked within-host and between-host dynamics for infections pathogens in the environment, Math. Biosci., 256 (2014): 58-78.
  • [20] D. Gray, G. Williams, Y. Li and D. Mcmanus, Transmission dynamics of Schistosoma japonicum in the Lakes and Marshlands of China, PLoS One, 3 (2008), e4058.
  • [21] D. Gray,Y. Li,G. Williams,Z. Zhao,D. Harn,S. Li,M. Ren,Z. Feng,F. Guo,J. Guo,J. Zhou,Y. Dong,Y. Li,A. Ross,D. McManus, A multi-component integrated approach for the elimination of schistosomiasis in the People's Republic of China: Design and baseline results of a 4-year cluster-randomised intervention trial, Int. J. Parasitol., 44 (2014): 659-668.
  • [22] J. Greenman,M. Kamo,M. Boots, External forcing of ecological and epidemiological systems: A resonance approach, Physica D, 190 (2004): 136-151.
  • [23] B. Gryseels,K. Polman,J. Clerinx,L. Kestens, Human schistosomiasis, Lancet, 368 (2006): 1106-1118.
  • [24] A. Guiro, S. Ouaro and A. Traore, Stability analysis of a schistosomiasis model with delays, Adv. Differ. Equ., 2013 (2013), 15pp.
  • [25] N. Hairston, On the mathematical analysis of schistosome populations, Bull. WHO, 33 (1965): 45-62.
  • [26] G. Hu,J. Hu,K. Song,D. Lin,J. Zhang,C. Cao,J. Xu,D. Li,W. Jiang, The role of health education and health promotionin the control of schistosomiasis: experiences from a 12-year intervention study in the Poyang Lake area, Acta Trop., 96 (2005): 232-241.
  • [27] C. Huang,J. Zou,S. Li,X. Zhou, Survival and reproduction of Oncomelania hupensis robertsoni in water network regions in Hubei Province, China, Chin. J. Schisto. Control., 23 (2011): 173-177.
  • [28] A. Hussein,I. Hassan,R. Khalifa, Development and hatching mechanism of Fasciola eggs, light and scanning electron microscopic studies, Saudi J. Biol. Sci., 17 (2010): 247-251.
  • [29] R. J. Larsen and M. L. Marx, An Introduction to Mathematical Statistics and Its Applications, 4$^{nd}$ edition, Pearson Education, 2012.
  • [30] S. Liang,D. Maszle,R. Spear, A quantitative framework for a multi-group model of Schistosomiasis japonicum transmission dynamics and control in Sichuan China, Acta Trop., 82 (2002): 263-277.
  • [31] J. Liu,B. Peng,T. Zhang, Effect of discretization on dynamical behavior of SEIR and SIR models with nonlinear incidence, Appl Math Lett, 39 (2015): 60-66.
  • [32] G. Macdonald, The dynamics of helminth infections, with special reference to schistosomes, Trans. R. Soci. Trop. Med. Hyg., 59 (1965): 489-506.
  • [33] T. Mangal, S. Paterson and A. Fenton, Predicting the impact of long-term temperature changes on the epidemiology and control of schistosomiasis: a mechanistic model. PLoSOne., 3 (2008), e1438.
  • [34] National Bureau of Statistics of China, China Demographic Yearbook of 2008. Available from: http://www.stats.gov.cn/tjsj/ndsj/2008/indexch.htm.
  • [35] M. Rios,J. Garcia,J. Sanchez,D. Perez, A statistical analysis of the seasonality in pulmonary tuberculosis, Eur. J. Epidemiol., 16 (2000): 483-488.
  • [36] R. Spear,A. Hubbard,S. Liang,E. Seto, Disease transmission models for public health decision making: Toward an approach for designing intervention strategies for Schistosomiasis japonica, Environ. Health Perspect., 110 (2002): 907-915.
  • [37] L. Sun,X. Zhou,Q. Hong,G. Yang,Y. Huang,W. Xi,Y. Jiang, Impact of global warming on transmission of schistosomiasis in China Ⅲ. Relationship between snail infections rate and environmental temperature, Chin.J.Schist. Control, 15 (2003): 161-163.
  • [38] Z. Teng,L. Chen, The positive periodic solutions of periodic Kolmogorove type systems with delays, Acta Math. Appl. Sin., 22 (1999): 446-456.
  • [39] Z. Teng,Z. Li, Permanence and asymptotic behavior of the N-species nonautonomous Lotka-Volterra competitive systems, Comp. Math. Appl., 39 (2000): 107-116.
  • [40] Z. Teng,Y. Liu,L. Zhang, Persistence and extinction of disease in non-autonomous SIRS epidemic models with disease-induced mortality, Nonlinear Anal., 69 (2008): 2599-2614.
  • [41] P. van den Driessche,J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002): 29-48.
  • [42] World Health Organization, Media Centre: Schistosomiasis. Updated January 2017. Available from: http://www.who.int/mediacentre/factsheets/fs115/en/.
  • [43] World Health Organization, Schistosomiasis. Available from: http://www.who.int/topics/schistosomiasis/en/.
  • [44] World Health Organization, Global Health Observatory (GHO) Data: Schistosomiasis. Available from: http://www.who.int/gho/neglected_diseases/schistosomiasis/en/.
  • [45] WHO Representative Office China, Schistosomiasis in China. Available from: http://www.wpro.who.int/china/mediacentre/factsheets/schistosomiasis/en/index.html.
  • [46] L. Wang,H. Chen,J. Guo,X. Zeng,X. Hong,J. Xiong,X. Wu,X. Wang,L. Wang,G. Xia,Y. Hao,X. Zhou, A strategy to control transmission of Schistosoma japonicum in China, N. Engl. J. Med., 360 (2009): 121-128.
  • [47] W. Wang, Y. Liang, Q. Hong and J. Dai, African schistosomiasis in mainland China: Risk of transmission and countermeasures to tackle the risk, Parasites Vectors, 6 (2013), 249.
  • [48] S. Wang,R. Spear, Exploring the impact of infection-induced immunity on the transmission of Schistosoma japonicum in hilly and mountainous environments in China, Acta Trop., 133 (2014): 8-14.
  • [49] L. Wang,J. Utzinger,X. Zhou, Schistosomiasis control: Experiences and lessons from China, Lancet, 372 (2008): 1793-1795.
  • [50] W. Wang,X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equat., 20 (2008): 699-717.
  • [51] G. Williams,A. Sleigh,Y. Li, Mathematical modelling of schistosomiasis japonica: Comparison of control strategies in the People's Republic of China, Acta Trop., 82 (2002): 253-262.
  • [52] J. Xiang,H. Chen,H. Ishikawa, A mathematical model for the transmission of Schistosoma japonicum in consideration of seasonal water level fluctuations of Poyang Lake in Jiangxi, China, Parasitol. Int., 62 (2013): 118-126.
  • [53] J. Xu,D. Lin,X. Wu,R. Zhu,Q. Wang,S. Lv,G. Yang,Y. Han,Y. Xiao,Y. Zhang,W. Chen,M. Xiong,R. Lin,L. Zhang,J. Xu,S. Zhang,T. Wang,L. Wen,X. Zhou, Retrospective investigation on national endemic situation of schistosomiasis $II$ Analysis of changes of endemic situation in transmission controlled counties, Chin. J. Schisto. Control., 23 (2011): 237-242.
  • [54] X. Zhang,S. Gao,H. Cao, Threshold dynamics for a nonautonomous schistosomiasis model in a periodic environment, J. Appl. Math. Comput., 46 (2014): 305-319.
  • [55] J. Zhang,Z. Jin,G. Sun,S. Ruan, Modeling seasonal rabies epidemic in China, Bull. Math. Biol., 74 (2012): 1226-1251.
  • [56] F. Zhang,X. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007): 496-516.
  • [57] X. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003.
  • [58] X. Zhou,L. Cai,X. Zhang,H. Sheng,X. Ma,Y. Jin,X. Wu,X. Wang,L. Wang,T. Lin,W. Shen,J. Lu,Q. Dai, Potential risks for transmission of Schistosomiasis caused by mobile population in Shanghai, Chin. J. Parasitol. Parasit. Dis., 25 (2007): 180-184.
  • [59] X. Zhou,J. Guo,X. Wu,Q. Jiang,J. Zheng,H. Dang,X. Wang,J. Xu,H. Zhu,G. Wu,Y. Li,X. Xu,H. Chen,T. Wang,Y. Zhu,D. Qiu,X. Dong,G. Zhao,S. Zhang,N. Zhao,G. Xia,L. Wang,S. Zhang,D. Lin,M. Chen,Y. Hao, Epidemiology of Schistosomiasis in the People's Republic of China, Emerg. Infect. Dis., 13 (2007): 1470-1476.
  • [60] L. Zou,S. Ruan, Schistosomiasis transmission and control in China, Acta Trop., 143 (2015): 51-57.


This article has been cited by

  • 1. Chunxiao Ding, Wenjian Liu, Yun Sun, Yuanguo Zhu, A delayed Schistosomiasis transmission model and its dynamics, Chaos, Solitons & Fractals, 2019, 118, 18, 10.1016/j.chaos.2018.11.005
  • 3. Tailei Zhang, Xiao-Qiang Zhao, Mathematical Modeling for Schistosomiasis with Seasonal Influence: A Case Study in Hubei, China, SIAM Journal on Applied Dynamical Systems, 2020, 19, 2, 1438, 10.1137/19M1280259

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Zhidong Teng, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved