Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Global dynamics of a vector-host epidemic model with age of infection

1. Department of Public Education, Zhumadian Vocational and Technical College, Zhumadian 463000, China
2. School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
3. Department of Mathematics and Physics, Anyang Institute of Technology, Anyang 455000, China
4. Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, Gainesville, FL 32611-8105, USA

In this paper, a partial differential equation (PDE) model is proposed to explore the transmission dynamics of vector-borne diseases. The model includes both incubation age of the exposed hosts and infection age of the infectious hosts which describe incubation-age dependent removal rates in the latent period and the variable infectiousness in the infectious period, respectively. The reproductive number $\mathcal R_0$ is derived. By using the method of Lyapunov function, the global dynamics of the PDE model is further established, and the results show that the basic reproduction number $\mathcal R_0$ determines the transmission dynamics of vector-borne diseases: the disease-free equilibrium is globally asymptotically stable if $\mathcal R_0≤ 1$, and the endemic equilibrium is globally asymptotically stable if $\mathcal{R}_0>1$. The results suggest that an effective strategy to contain vector-borne diseases is decreasing the basic reproduction number $\mathcal{R}_0$ below one.

  Article Metrics

Keywords Age structure; reproduction number; global stability; vector-borne disease; Lyapunov function

Citation: Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1159-1186. doi: 10.3934/mbe.2017060


  • [1] http://www.who.int/mediacentre/factsheets/fs387/en/.
  • [2] http://www.shanghaidaily.com/national/Guangdong-sees-1074-new-dengue-cases/shdaily.shtml.
  • [3] R. M. Anderson and R. M. May, Infectious Disease of Humans: Dynamics and Control, Oxford University Press, Oxford, 1991.
  • [4] C. Bowman,A. B. Gumel,J. Wu,P. V. Driessche,H. Zhu, A mathematical model for assessing control strategies against West Nile virus, Bull. Math. Biol., 67 (2005): 1107-1133.
  • [5] F. Brauer, P. V. Driessche and J. Wu, eds., Mathematical Epidemiology, Lecture Notes in Math, Springer, Berlin, 2008.
  • [6] F. Brauer,Z. S. Shuai,P. V. Driessche, Dynamics of an age-of-infection cholera model, Math. Biosci. Eng., 10 (2013): 1335-1349.
  • [7] S. Busenberg,K. Cooke,M. Iannelli, Endemic threshold and stability in a class of age-structured epidemics, SIAM J. Appl. Math., 48 (1988): 1379-1395.
  • [8] S. N. Busenberg,M. Iannelli,H. R. Thieme, Global behavior of an age-structured epdiemic model, SIAM J. Math. Anal., 22 (1991): 1065-1080.
  • [9] S. Busenberg,M. Iannelli,H. Thieme, Dynamics of an age structured epidemic model, in: S.T. Liao, Y.Q. Ye, T.R. Ding (Eds.), Dynamical Systems, Nankai Series in Pure, Applied Mathematics and Theoretical Physics, 4 (1993): 1-19.
  • [10] C. Castillo-Chavez,Z. Feng, Global stability of an age-structure model for TB and its applications to optimal vaccination strategies, Math. Biosci., 151 (1998): 135-154.
  • [11] Y. Cha,M. Iannelli,F. A. Milner, Existence and uniqueness of endemic states for the age-structured SIR epidemic model, Math. Biosci., 150 (1998): 177-190.
  • [12] Z. L. Feng,J. X. Velasco-Hernandez, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol., 35 (1997): 523-544.
  • [13] Z. Feng,W. Huang,C. Castillo-Chavez, Global behavior of a multi-group SIS epidemic model with age structure, J. Diff. Equs., 218 (2005): 292-324.
  • [14] H. Guo,M. Y. Li,Z. Shuai, Global stability of the endemic equilibrium of multigroup sir epidemic models, Can. Appl. Math. Q., 14 (2006): 259-284.
  • [15] H. Guo,M. Y. Li,Z. Shuai, A graph-theoretic approach to the method of global lyapunov functions, Proc. Amer. Math. Soc., 136 (2008): 2793-2802.
  • [16] H. Inaba,H. Sekine, A mathematical model for chagas disease with infection-age-dependent infectivity, Math, Biosci., 190 (2004): 39-69.
  • [17] H. Inaba, Mathematical analysis of an age-structured SIR epidemic model with vertical transmission, Dis. Con. Dyn. Sys. B, 6 (2006): 69-96.
  • [18] M. Y. Li,Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Diff. Equs., 248 (2010): 1-20.
  • [19] A. L. Lloyd, Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods, Proc. Roy. Soc. Lond. B., 268 (2001): 985-993.
  • [20] A. L. Lloyd, Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics, Theor. Popul. Biol., 60 (2001): 59-71.
  • [21] P. Magal,C. C. McCluskey,G. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010): 1109-1140.
  • [22] P. Magal,C. McCluskey, Two group infection age model: An application to nosocomial infection, SIAM J. Appl. Math., 73 (2013): 1058-1095.
  • [23] M. Martcheva,F. Hoppensteadt, India's approach to eliminating plasmodium falciparum malaria: A Modeling perspective, J. Biol. Systems, 18 (2010): 867-891.
  • [24] M. Martcheva,X. Z. Li, Competitive exclusion in an infection-age structured model with environmental transmission, Math. Anal. Appl., 408 (2013): 225-246.
  • [25] M. Martcheva,H. R. Thieme, Progression age enhanced backward bifurcation in an epidemic model with super-infection, J. Math. Biol., 46 (2003): 385-424.
  • [26] G. C. Pachecoa,L. Estevab,J. A. Montano-Hirosec,C. Vargasd, Modelling the dynamics of West Nile Virus, Bull. Math. Biol., 67 (2005): 1157-1172.
  • [27] Z. P. Qiu,Q. K. Kong,X. Z. Li,M. M. Martcheva, The vector-host epidemic model with multiple strains in a patchy environment, J. Math. Anal. Appl., 405 (2013): 12-36.
  • [28] Z. P. Qiu,Z. L. Feng, Transmission dynamics of an influenza model with age of infection and antiviral treatment, J. Dyn. Diff. Equat., 22 (2010): 823-851.
  • [29] H. R. Thieme,C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics if HIV/AIDs?, SIAM J. Appl. Math., 53 (1993): 1447-1479.
  • [30] J. Tumwiine,J. Y. Mugisha,L. S. Luboobi, A mathematical model for the dynamics of malaria in a human host and mosquito vector with temporary immunity, Appl. Math. Comput., 189 (2007): 1953-1965.
  • [31] J. X. Yang,Z. P. Qiu,X. Z. Li, Global stability of an age-structured cholera model, Math. Biol. Enger., 11 (2014): 641-665.
  • [32] P. Zhang,Z. Feng,F. Milner, A schistosomiasis model with an age-structure in human hosts and its application to treatment strategies, Math. Biosci., 205 (2007): 83-107.


This article has been cited by

  • 1. Suxia Zhang, Hongsen Dong, Xiaxia Xu, Xiaoqin Shen, Analysis of a vector-borne disease model with impulsive perturbation and reinfection, Journal of Elliptic and Parabolic Equations, 2019, 10.1007/s41808-019-00046-9
  • 2. Xia Wang, Yuming Chen, Maia Martcheva, Libin Rong, Asymptotic analysis of a vector-borne disease model with the age of infection, Journal of Biological Dynamics, 2020, 14, 1, 332, 10.1080/17513758.2020.1745912

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Xue-Zhi Li, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved