Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

The spatial dynamics of a zebrafish model with cross-diffusions

1. Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2. Department of Mathematics, Nanjing University of Aeronautics and Astronautics, School of Mathematical and Natural Sciences, Arizona State University, Nanjing 210016, China
3. Phoenix AZ 85069-7100, USA

This paper investigates the spatial dynamics of a zebrafish model with cross-diffusions. Sufficient conditions for Hopf bifurcation and Turing bifurcation are obtained by analyzing the associated characteristic equation. In addition, we deduce amplitude equations based on multiple-scale analysis, and further by analyzing amplitude equations five categories of Turing patterns are gained. Finally, numerical simulation results are presented to validate the theoretical analysis. Furthermore, some examples demonstrate that cross-diffusions have an effect on the selection of patterns, which explains the diversity of zebrafish pattern very well.

  Article Metrics

Keywords Cross-diffusions; Hopf bifurcation; turing bifurcation; pattern selection; amplitude equation; zebrafish

Citation: Hongyong Zhao, Qianjin Zhang, Linhe Zhu. The spatial dynamics of a zebrafish model with cross-diffusions. Mathematical Biosciences and Engineering, 2017, 14(4): 1035-1054. doi: 10.3934/mbe.2017054


  • [1] R. Asai,R. Taguchi,Y. Kume,M. Saito,S. Kondo, Zebrafish Leopard gene as a component of the putative reaction-diffusion system, Mech. Dev., 89 (1999): 87-92.
  • [2] V. Dufiet,J. Boissonade, Dynamics of turing pattern monolayers close to onset, Phys. Rev. E., 53 (1996): 1-10.
  • [3] M. Fras,M. Gosak, Spatiotemporal patterns provoked by environmental variability in a predator-prey model, Biosystems, 114 (2013): 172-177.
  • [4] A. Gierer,H. Meinhardt, A theory of biological pattern formation, Kybernetika, 12 (1972): 30-39.
  • [5] P. Gray,S. K. Scott, Autocatalytic reactions in the isothermal continuous stirred tank reactor, Chem.Eng. Sci., 39 (1984): 1087-1097.
  • [6] G. H. Gunaratne,Q. Ouyang,H. L. Swinney, Pattern formation in the presence of symmetries, Phys. Rev. E., 50 (1994): 4-15.
  • [7] O. Jensen,V. C. Pannbacker,G. Dewel,P. Borckmans, Subcritical transitions to Turing structures, Phys. Lett. A., 179 (1993): 91-96.
  • [8] C. T. Klein,F. F. Seelig, Turing structures in a system with regulated gap-junctions, Biosystems, 35 (1995): 15-23.
  • [9] S. Kondo, The reaction-diffusion system: A mechanism for autonomous pattern for-mation in the animal skin, Genes. Cells., 7 (2002): 535-541.
  • [10] S. Kondo,R. Asia, A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus, Nature, 376 (1995): 765-767.
  • [11] S. Kondo,H. Shirota, Theoretical analysis of mechanisms that generate the pigmen-tation pattern of animals, Semin.Cell. Dev. Biol., 20 (2009): 82-89.
  • [12] H. Meinhardt, Reaction-diffusion system in development, Appl. Math. Comput Appl. Math. Comput., 32 (1989): 103-135.
  • [13] S. Miyazawa,M. Okamoto,S. Kondo, Blending of animal colour patterns by hybridiza-tion, Nat. Commun, 10 (2010): 1-6.
  • [14] M. Nguyen,A.M. Stewart,A.V. Kalueff, Aquatic blues: Modeling depression and antide-pressant action in zebrafish, Prog. Neuro-Psychoph, 55 (2014): 26-39.
  • [15] Ouyang Q., 2000. Pattern Formation in Reaction-diffusion Systems, (Shanghai: Shanghai Sci-Tech Education Publishing House)(in Chinese),
  • [16] D.M. Parichy, Pigment patterns: Fish in stripes and spots current, Biology, 13 (2003): 947-950.
  • [17] J. Schnackenberg, Simple chemical reaction systems with limit cycle behavior, J. Theor. Biol., 81 (1979): 389-400.
  • [18] H. Shoji,Y. Iwasa, Labyrinthine versus straight-striped patterns generated by two-dimensional Turing systems, J.Theor. Biol., 237 (2005): 104-116.
  • [19] H. Shoji,Y. Iwasa, Pattern selection and the direction of stripes in two-dimensional turing systems for skin pattern formation of fishes Formation of Fishes, Forma, 18 (2003): 3-18.
  • [20] H. Shoji,Y. Iwasa,S. Kondo, Stripes, spots, or reversedspots in two-dimensional Turing systems, J. Theor. Biol., 224 (2003): 339-350.
  • [21] H. Shoji,Y. Iwasa,A. Mochizuki,S. Kondo, Directionality of stripes formed by anisotropic reaction-diffusion models, J. Theor. Biol., 214 (2002): 549-561.
  • [22] H. Shoji,A. Mochizuki,Y. Iwasa,M. Hirata,T. Watanabe,S. Hioki,S. Kondo, Origin of directionality in the fish stripe pattern, Dev. Dynam., 226 (2003): 627-633.
  • [23] A.M. Stewart,E. Yang,M. Nguyen,A.V. Kalueff, Developing zebrafish models relevant to PTSD and other trauma-and stressor-related disorders, Prog. Neuro-Psychoph, 55 (2014): 67-79.
  • [24] G. Q. Sun,Z. Jin,Q. X. Liu,B. L. Li, Rich dynamics in a predator-prey model with both noise and periodic force, Biosystems, 100 (2010): 14-22.
  • [25] Wang, W. M. Liu, H. Y. Cai Y. L. and Liu, Z. Q. (2011), Turing pattern selection in a reaction diffusion epidemic model, Chin. Phys. B., 074702, 12pp.
  • [26] M. Yamaguchi,E. Yoshimoto,S. Kondo, Pattern regulation in the stripe of zebrafish suggests an underlying dynamic and autonomous mechanism, PNAS, 104 (2007): 4790-4793.
  • [27] X. Y. Yang,T. Q. Liu,J. J. Zhang,T. S. Zhou, The mechanism of Turing pattern formation in a positive feedback system with cross diffusion, J. Stat. Mech-Theory. E., 14 (2014): 1-16.
  • [28] Zhang, X. C. Sun G. Q. and Jin, Z. Spatial dynamics in a predator-prey model with Beddington-DeAngelis functional response, Phys. Rev. E., (2012), 021924, 14pp.


Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Hongyong Zhao, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved