Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Moments of von mises and fisher distributions and applications

1. University of Alberta, Centre for Mathematical Biology, Edmonton, Alberta, T6G2G1, Canada
2. Department of Mathematics, Heriot-Watt University, Edinburgh, EH14 4AS, UK
3. Cross Cancer Institute, 11560-University Ave NW, Edmonton, Alberta, T6G 1Z2, Canada

The von Mises and Fisher distributions are spherical analogues to theNormal distribution on the unit circle and unit sphere, respectively. The computation of their moments, and in particular the second moment, usually involves solving tedious trigonometric integrals. Here we present a new method to compute the moments of spherical distributions, based on the divergence theorem. This method allows a clear derivation of the second moments and can be easily generalized to higher dimensions. In particular we note that, to our knowledge, the variance-covariance matrix of the three dimensional Fisher distribution has not previously been explicitly computed. While the emphasis of this paper lies in calculating the moments of spherical distributions, their usefulness is motivated by their relationship to population statistics in animal/cell movement models and demonstrated in applications to the modelling of sea turtle navigation, wolf movement and brain tumour growth.

  Figure/Table
  Supplementary
  Article Metrics

Keywords Von Mises distribution; Fisher distribution; spherical distributions; moments; biological applications

Citation: Thomas Hillen, Kevin J. Painter, Amanda C. Swan, Albert D. Murtha. Moments of von mises and fisher distributions and applications. Mathematical Biosciences and Engineering, 2017, 14(3): 673-694. doi: 10.3934/mbe.2017038

References

  • [1] wikipedia. com, https://en.wikipedia.org/wiki/VonMises%E2%80%93Fisher_distribution, last accessed on 11/22/2016.
  • [2] A. Banerjee,I. S. Dhillon,J. Ghosh,S. Sra, Clustering on the unit hypersphere using von Mises-Fisher distributions, Journal of Machine Learning Research, 6 (2005): 1345-1382.
  • [3] E. Batschelet, null, Circular Statistics in Biology, Academic Press, London, 1981.
  • [4] C. Beaulieu, The basis of anisotropic water diffusion in the nervous system -a technical review, NMR Biomed., 15 (2002): 435-455.
  • [5] R. Bleck, An oceanic general circulation model framed in hybrid isopycnic-cartesian coordinates, Ocean Mod., 4 (2002): 55-88.
  • [6] E. A. Codling,N. Bearon,G. J. Thorn, Thorn, Diffusion about the mean drift location in a biased random walk, Ecology, 91 (2010): 3106-3113.
  • [7] E. A. Codling,M. J. Plank,S. Benhamou, Random walk models in biology, J. Roy. Soc. Interface, 5 (2008): 813-834.
  • [8] C. Darwin, Perception in the lower animals, Nature, 7 (1873): 360.
  • [9] C. Engwer,T. Hillen,M. Knappitsch,C. Surulescu, Glioma follow white matter tracts: A multiscale DTI-based model, J. Math. Biol., 71 (2015): 551-582.
  • [10] N. I. Fisher, null, Statistical Analysis of Circular Data, Cambridge University Press, Cambridge, 1993.
  • [11] A. Giese,L. Kluwe,B. Laube,H. Meissner,M. E. Berens,M. Westphal, Migration of human glioma cells on myelin, Neurosurgery, 38 (1996): 755-764.
  • [12] P. G. Gritsenko,O. Ilina,P. Friedl, Interstitial guidance of cancer invasion, Journal or Pathology, 226 (2012): 185-199.
  • [13] H. Hatzikirou,A. Deutsch,C. Schaller,M. Simaon,K. Swanson, Mathematical modelling of glioblastoma tumour development: A review, Math. Models Meth. Appl. Sci., 15 (2005): 1779-1794.
  • [14] T. Hillen, ${M}^5$ mesoscopic and macroscopic models for mesenchymal motion, J. Math. Biol., 53 (2006): 585-616.
  • [15] T. Hillen, E. Leonard and H. van Roessel, Partial Differential Equations; Theory and Completely Solved Problems, Wiley, Hoboken, NJ, 2012.
  • [16] T. Hillen and K. Painter, Transport and anisotropic diffusion models for movement in oriented habitats, In: Lewis, M., Maini, P., Petrovskii, S. (Eds.), Dispersal, Individual Movement and Spatial Ecology: A Mathematical Perspective, Springer, Heidelberg, 2071 (2013), 177-222.
  • [17] T. Hillen, On the $L^2$-moment closure of transport equations: The general case, Discr.Cont.Dyn.Systems, Series B, 5 (2005): 299-318.
  • [18] A. R. C. James,A. K. Stuart-Smith, Distribution of caribou and wolves in relation to linear corridors, The Journal of Wildlife Management, 64 (2000): 154-159.
  • [19] A. Jbabdi,E. Mandonnet,H. Duffau,L. Capelle,K. Swanson,M. Pelegrini-Issac,R. Guillevin,H. Benali, Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging, Mang. Res. Med., 54 (2005): 616-624.
  • [20] J. Kent, The Fisher-Bingham Distribution on the Sphere, J. Royal. Stat. Soc., 1982.
  • [21] E. Konukoglu,O. Clatz,P. Bondiau,H. Delignette,N. Ayache, Extrapolation glioma invasion margin in brain magnetic resonance images: Suggesting new irradiation margins, Medical Image Analysis, 14 (2010): 111-125.
  • [22] K. V. Mardia and P. E. Jupp, Directional Statistics, Wiley, New York, 2000.
  • [23] H. McKenzie,E. Merrill,R. Spiteri,M. Lewis, How linear features alter predator movement and the functional response, Royal Society Interface, 2 (2012): 205-216.
  • [24] P. Moorcroft,M. A. Lewis, null, Mechanistic Home Range Analysis, Princeton University Press, USA, 2006.
  • [25] J. A. Mortimer,A. Carr, Reproduction and migrations of the Ascension Island green turtle (chelonia mydas), Copeia, 1987 (1987): 103-113.
  • [26] P. Mosayebi,D. Cobzas,A. Murtha,M. Jagersand, Tumor invasion margin on the Riemannian space of brain fibers, Medical Image Analysis, 16 (2011): 361-373.
  • [27] A. Okubo and S. Levin, Diffusion and Ecological Problems: Modern Perspectives, Second edition. Interdisciplinary Applied Mathematics, 14. Springer-Verlag, New York, 2001.
  • [28] H. Othmer,S. Dunbar,W. Alt, Models of dispersal in biological systems, Journal of Mathematical Biology, 26 (1988): 263-298.
  • [29] K. Painter, Modelling migration strategies in the extracellular matrix, J. Math. Biol., 58 (2009): 511-543.
  • [30] K. Painter,T. Hillen, Mathematical modelling of glioma growth: The use of diffusion tensor imaging DTI data to predict the anisotropic pathways of cancer invasion, J. Theor. Biol., 323 (2013): 25-39.
  • [31] K. Painter,T. Hillen, Navigating the flow: Individual and continuum models for homing in flowing environments, Royal Society Interface, 12 (2015): 20150,647.
  • [32] K. J. Painter, Multiscale models for movement in oriented environments and their application to hilltopping in butterflies, Theor. Ecol., 7 (2014): 53-75.
  • [33] J. Rao, Molecular mechanisms of glioma invasiveness: The role of proteases, Nature Reviews Cancer, 3 (2003): 489-501.
  • [34] A. Swan, T. Hillen, J. Bowman and A. Murtha, A patient-specific anisotropic diffusion model for brain tumor spread, Bull. Math. Biol., to appear (2017).
  • [35] K. Swanson,E. A. Jr,J. Murray, A quantitative model for differential motility of gliomas in grey and white matter, Cell Proliferation, 33 (2000): 317-329.
  • [36] K. Swanson,R. Rostomily,E. Alvord Jr, Predicting survival of patients with glioblastoma by combining a mathematical model and pre-operative MR imaging characteristics: A proof of principle, British Journal of Cancer, 98 (2008): 113-119.
  • [37] P. Turchin, Quantitative Analysis of Movement, Sinauer Assoc., Sunderland, 1998.
  • [38] C. Xue,H. Othmer, Multiscale models of taxis-driven patterning in bacterial populations, SIAM Journal for Applied Mathematics, 70 (2009): 133-167.

 

This article has been cited by

  • 1. Amanda Swan, Thomas Hillen, John C. Bowman, Albert D. Murtha, A Patient-Specific Anisotropic Diffusion Model for Brain Tumour Spread, Bulletin of Mathematical Biology, 2018, 80, 5, 1259, 10.1007/s11538-017-0271-8
  • 2. Karl K. Sabelfeld, Application of the von Mises–Fisher distribution to Random Walk on Spheres method for solving high-dimensional diffusion–advection–reaction equations, Statistics & Probability Letters, 2018, 138, 137, 10.1016/j.spl.2018.03.002
  • 3. Ion Bica, Thomas Hillen, Kevin J. Painter, Aggregation of biological particles under radial directional guidance, Journal of Theoretical Biology, 2017, 427, 77, 10.1016/j.jtbi.2017.05.039
  • 4. S.T. Johnston, K.J. Painter, The impact of short- and long-range perception on population movements, Journal of Theoretical Biology, 2018, 10.1016/j.jtbi.2018.10.031
  • 5. K.J. Painter, A.Z. Plochocka, Efficiency of island homing by sea turtles under multimodal navigating strategies, Ecological Modelling, 2019, 391, 40, 10.1016/j.ecolmodel.2018.10.025
  • 6. Kevin J. Painter, Thomas Hillen, , Cell Movement, 2018, Chapter 5, 103, 10.1007/978-3-319-96842-1_5
  • 7. Juan D. Olarte-Plata, Fernando Bresme, Theoretical description of the thermomolecular orientation of anisotropic colloids, Physical Chemistry Chemical Physics, 2019, 10.1039/C8CP06780E
  • 8. Karol Salazar-Ariza, Rafael Torres, Statistical theory of the polarization on the Poincaré sphere, Optics Letters, 2019, 44, 13, 3318, 10.1364/OL.44.003318
  • 9. Paul C. Bressloff, Samuel R. Carroll, Stochastic neural fields as gradient dynamical systems, Physical Review E, 2019, 100, 1, 10.1103/PhysRevE.100.012402

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Thomas Hillen, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved