Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Global stability of a multistrain SIS model with superinfection

1. Bolyai Institute, University of Szeged, Aradi vértanúk tere 1., Szeged, H-6720, Hungary
2. Department of Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
3. Bolyai Institute, University of Szeged, Aradi vértanúk tere 1., Szeged, H-6720, Hungary

In this paper, we study the global stability of a multistrain SIS model with superinfection. We present an iterative procedure to calculate a sequence of reproduction numbers, and we prove that it completely determines the global dynamics of the system. We show that for any number of strains with different infectivities, the stable coexistence of any subset of the strains is possible, and we completely characterize all scenarios. As an example, we apply our method to a three-strain model.

  Article Metrics

Keywords Epidemic model; multistrain model; SIS dynamics; asymptotically autonomous systems; global stability; superinfection

Citation: Attila Dénes, Yoshiaki Muroya, Gergely Röst. Global stability of a multistrain SIS model with superinfection. Mathematical Biosciences and Engineering, 2017, 14(2): 421-435. doi: 10.3934/mbe.2017026


  • [1] S. Bianco,L. B. Shaw,I. B. Schwartz, Epidemics with multistrain interactions: The interplay between cross immunity and antibody-dependent enhancement, Chaos, 19 (2009): 043123.
  • [2] D. Bichara,A. Iggidr,G. Sallet, Global analysis of multi-strains SIS, SIR and MSIR epidemic models, J. Appl. Math. Comput., 44 (2014): 273-292.
  • [3] A. Dénes,G. Röst, Global stability for SIR and SIRS models with nonlinear incidence and removal terms via Dulac functions, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016): 1101-1117.
  • [4] A. Dénes and G. Röst, Structure of the global attractors in a model for ectoparasite-borne diseases, BIOMATH, 1(2012), 1209256, 5 pp.
  • [5] A. Dénes,G. Röst, Global dynamics for the spread of ectoparasite-borne diseases, Nonlinear Anal. Real World Appl., 18 (2014): 100-107.
  • [6] A. Dénes and G. Röst, Impact of excess mortality on the dynamics of diseases spread by ectoparasites, in: M. Cojocaru, I. S. Kotsireas, R. N. Makarov, R. Melnik, H. Shodiev, (Eds. ), Interdisciplinary Topics in Applied Mathematics, Modeling and Computational Science, Springer Proceedings in Mathematics & Statistics, 117 (2015), 177-182.
  • [7] T. Faria,Y. Muroya, Global attractivity and extinction for Lotka-Volterra systems with infinite delay and feedback controls, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015): 301-330.
  • [8] S. Kryazhimskiy,U. Dieckmann,S. A. Levin,J. Dushoff, On state-space reduction in multi-strain pathogen models, with an application to antigenic drift in influenza A, PLoS Comput. Biol., 3 (2007): 1513-1525.
  • [9] M. Martcheva, A non-autonomous multi-strain SIS epidemic model, J. Biol. Dyn., 3 (2009): 235-251.
  • [10] M. A. Nowak, Evolutionary Dynamics, The Belknap Press of Harvard University Press, Cambridge, MA, 2006.
  • [11] H. R. Thieme, Asymptotically autonomous differential equations in the plane, Rocky Mountain J. Math., 24 (1994): 351-380.


Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Attila Dénes, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved