Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery

1. Dept. Math., IST, Univ. Lisboa and CEMAT, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
2. Dept. of CS. and Math., LAU, P-36, Byblos, Lebanon

The inflammatory process of atherosclerosis leads to the formation of an atheromatous plaque in the intima of the blood vessel. The plaque rupture may result from the interaction between the blood and the plaque. In each cardiac cycle, blood interacts with the vessel, considered as a compliant nonlinear hyperelastic. A three dimensional idealized fluid-structure interaction (FSI) model is constructed to perform the blood-plaque and blood-vessel wall interaction studies. An absorbing boundary condition (BC) is imposed directly on the outflow in order to cope with the spurious reflexions due to the truncation of the computational domain. The difference between the Newtonian and non-Newtonian effects is highlighted. It is shown that the von Mises and wall shear stresses are significantly affected according to the rigidity of the wall. The numerical results have shown that the risk of plaque rupture is higher in the case of a moving wall, while in the case of a fixed wall the risk of progression of the atheromatous plaque is higher.

  Article Metrics

Keywords Atherosclerosis; blood flow; non-Newtionian fluid; fluid-structure interaction; wall shear stress; nonlinear hyperelastic structure

Citation: Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences and Engineering, 2017, 14(1): 179-193. doi: 10.3934/mbe.2017012


  • [1] B. S. Aribisala,Z. Morris,E. Eadie,A. Thomas,A. Gow,M. C. Valdés Hernández,N. A. Royle,M. E. Bastin,J. Starr,I. J. Deary,J. M. Wardlaw, Blood pressure, internal carotid artery flow parameters and age-related white matter hyperintensities, Hypertension, 63 (2014): 1011-1018.
  • [2] S. Boujena,O. Kafi,N. El Khatib, A 2D mathematical model of blood flow and its interactions in the atherosclerotic artery, Math Model Nat Phenom, 9 (2014): 46-68.
  • [3] S. Boujena,O. Kafi,N. El Khatib, Generalized Navier-Stokes equations with non-standard conditions for blood flow in atherosclerotic artery, Appl Anal, 95 (2016): 1645-1670.
  • [4] Y. C. Chang,T. Y. Hou,B. Merriman,S. Osher, A level set formulation of eulerian interface capturing methods for incompressible fluid flows, J Comput Phys, 124 (1996): 449-464.
  • [5] P. G. Ciarlet, Mathematical Elasticity. Vol. 1, Three Dimensional Elasticity, Elsevier, 2004.
  • [6] M. Cilla,E. Peña,M. A. Martínez, 3D computational parametric analysis of eccentric atheroma plaque: Influence of axial and circumferential residual stresses, Biomech Model Mechanobiol, 11 (2012): 1001-1013.
  • [7] COMSOL Multiphysics, User's Guide 4. 3b, Licence 17073661,2012.
  • [8] P. Crosetto,P. Raymond,S. Deparis,D. Kontaxakis,N. Stergiopulos,A. Quarteroni, Fluid-structure interaction simulations of physiological blood flow in the aorta, Comput Fluids, 43 (2011): 46-57.
  • [9] J. Donea,S. Giuliani,J. P. Halleux, An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions, Comput Methods Appl Mech Engrg, 33 (1982): 689-723.
  • [10] N. El Khatib,S. Genieys,V. Volpert, Atherosclerosis initiation modeled as an inflammatory process, Math Model Nat Phenom, 2 (2007): 126-141.
  • [11] J. Fan,T. Watanabe, Inflammatory reactions in the pathogenesis of atherosclerosis, J Atheroscler Thromb, 10 (2003): 63-71.
  • [12] L. Formaggia,A. Moura,F. Nobile, On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations, ESAIM-Math Model Num, 41 (2007): 743-769.
  • [13] L. Formaggia and A. Veneziani, Reduced and multiscale models for the human cardiovascular system. Lecture Notes, VKI Lecture Series, 2013.
  • [14] S. Frei, T. Richter and T. Wick, Eulerian techniques for fluid-structure interactions -part Ⅱ: Applications. In A. Abdulle, S. Deparis, D. Kressner, F. Nobile and M. Picasso editors, Numerical Mathematics and Advanced Applications, ENUMATH 2013, Springer (2015), 745-754.
  • [15] A. M. Gambaruto,J. Janela,A. Moura,A. Sequeira, Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology, Math Biosci Eng, 8 (2011): 409-423.
  • [16] S. Glagov,E. Weisenberg,C. K. Zarins,R. Stankunavicius,G. J. Kolettis, Compensatory enlargement of human atherosclerotic coronary arteries, N Engl J Med, 316 (1987): 1371-1375.
  • [17] R. Glowinski,T. W. Pan,J. Periaux, A fictitious domain method for Dirichlet problem and applications, Comput Method Appl M, 111 (1994): 283-303.
  • [18] R. Glowinski,T. W. Pan,J. Periaux, A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 112 (1994): 133-148.
  • [19] T. Guerra,A. Sequeira,J. Tiago, Optimal control in blood flow simulations, Int J Nonlinear Mech, 64 (2014): 57-69.
  • [20] W. Hao,A. Friedman,J. Tiago, The LDL-HDL profile determines the risk of atherosclerosis: A mathematical model, A Mathematical Model. PLoS ONE, 9 (2014): e90497.
  • [21] T. J. R. Hughes,W. K. Liu,T. K. Zimmermann, Arbitrary lagrangian-eulerian finite element formulation for incompressible viscous flows, Comput Method Appl M, 29 (1981): 329-349.
  • [22] I. Husain,F. Labropulu,C. Langdon,J. Schwark, A comparison of Newtonian and non-Newtonian models for pulsatile blood flow simulations, J Mech Behav Mater, 21 (2013): 147-153.
  • [23] J. Janela,A. Moura,A. Sequeira, A 3D non-Newtonian fluid-structure interaction model for blood flow in arteries, J. Comput. Appl. Math., 234 (2010): 2783-2791.
  • [24] J. Janela,A. Moura,A. Sequeira, Absorbing boundary conditions for a 3D non-Newtonian fluid-structure interaction model for blood flow in arteries, Internat. J. Engrg. Sci., 48 (2010): 1332-1349.
  • [25] S. A. Kock,J. V. Nygaard,N. Eldrup,E. T. Fründ,A. Klærke,W. P. Paaske,E. Falk,W. Y. Kim, Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models, J Biomech, 41 (2008): 1651-1658.
  • [26] S. Le Floc'h,J. Ohayon,P. Tracqui,G. Finet,A. M. Gharib,R. L. Maurice,G. Cloutier,R. I. Pettigrew, Vulnerable atherosclerotic plaque elasticity reconstruction based on a segmentation-driven optimization procedure using strain measurements: theoretical framework, IEEE T Med Imaging, 28 (2009): 1126-1137.
  • [27] Z. Y. Li,S. Howarth,T. Tang,J. H. Gillard, How critical is fibrous cap thickness to carotid plaque stability? A flow plaque interaction model, Stroke, 37 (2006): 1195-1199.
  • [28] Z. Y. Li,S. Howarth,R. A. Trivedi,J. M. U-King-Im,M. J. Graves,A. Brown,L. Wang,J. H. Gillard, Stress analysis of carotid plaque rupture based on in vivo high resolution MRI, J Biomech, 39 (2006): 2611-2622.
  • [29] B. Muha,S. Čanić, Existence of a solution to a fluid-multi-layered-structure interaction problem, J Differ Equations, 256 (2014): 658-706.
  • [30] F. Nobile, Numerical Approximation of Fluid-Structure Interaction Problems with Application to Haemodynamics, Ph. D thesis, École Polytechnique Fédérale de Lausanne, Switzerland, 2001.
  • [31] C. S. Peskin, Numerical analysis of blood flow in the heart, J Comput Phys, 25 (1977): 220-252.
  • [32] C. S. Peskin,D. M. McQueen, A three-dimensional computational method for blood flow in the heart -Ⅰ Immersed elastic fibers in a viscous incompressible fluid, J Comput Phys, 81 (1989): 372-405.
  • [33] R. N. Poston,D. R. M. Poston, A typical atherosclerotic plaque morphology produced in silico by an atherogenesis model based on self-perpetuating propagating macrophage recruitment, Math Model Nat Phenom, 2 (2007): 142-149.
  • [34] A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system. in computational models for the human body, Ciarlet PG (eds). Handbook of Numerical Analysis, North-Holland: Amsterdam, 12 (2004), 3-127.
  • [35] T. Quillard,P. Libby, Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development, Circ Res, 111 (2012): 231-244.
  • [36] S. Ramalho,A. Moura,A. M. Gambaruto,A. Sequeira, Sensitivity to outflow boundary conditions and level of geometry description for a cerebral aneurysm, Int J Numer Method Biomed Eng, 28 (2012): 697-713.
  • [37] R. Ross, Atherosclerosis -An inflammatory disease, Massachusetts Medical Society, 340 (1999): 115-120.
  • [38] G. Ruiz-Ares,B. Fuentes,P. Martínez-Sanchéz,E. Díez-Tejedor, A prediction model for unstable carotid atheromatous plaque in acute ischemic stroke patients: proposal and internal validation, Ultrasound in Med. & Biol., 40 (2014): 1958-1965.
  • [39] L. G. Spagnoli,E. Bonanno,G. Sangiorgi,A. Mauriello, Role of inflammation in atherosclerosis, J Nucl Med, 48 (2007): 1800-1815.
  • [40] D. Tang,C. Yang,J. Zheng,P. K. Woodard,G. A. Sicard,J. E. Saffitz,C. Yuan, 3D MRI-based multicomponent FSI models for atherosclerotic plaques, Ann Biomed Eng, 32 (2004): 947-960.
  • [41] T. Wick, Flapping and contact FSI computations with the fluid-solid interface-tracking/ interface-capturing technique and mesh adaptivity, Comput Mech, 53 (2014): 29-43.
  • [42] Y. Yang,W. Jäger,M. Neuss-Radu,T. Richter, Mathematical modeling and simulation of the evolution of plaques in blood vessels, J Math Biol, 72 (2016): 973-996.
  • [43] J. Yuan,Z. Teng,J. Feng,Y. Zhang,A. J. Brown,J. H. Gillard,Z. Jing,Q. Lu, Influence of material property variability on the mechanical behaviour of carotid atherosclerotic plaques: A 3D fluid-structure interaction analysis, Int J Numer Method Biomed Eng, 31 (2015): p2722.


This article has been cited by

  • 1. Glaucia C. Pereira, , Biotechnology and Production of Anti-Cancer Compounds, 2017, Chapter 11, 253, 10.1007/978-3-319-53880-8_11
  • 2. Liang Wang, Dalin Tang, Akiko Maehara, Zheyang Wu, Chun Yang, David Muccigrosso, Jie Zheng, Richard Bach, Kristen L. Billiar, Gary S. Mintz, Fluid-structure interaction models based on patient-specific IVUS at baseline and follow-up for prediction of coronary plaque progression by morphological and biomechanical factors: A preliminary study, Journal of Biomechanics, 2018, 68, 43, 10.1016/j.jbiomech.2017.12.007
  • 3. Liang Wang, Dalin Tang, Akiko Maehara, David Molony, Jie Zheng, Habib Samady, Zheyang Wu, Wenbin Lu, Jian Zhu, Genshan Ma, Don P. Giddens, Gregg W. Stone, Gary S. Mintz, Multi-factor decision-making strategy for better coronary plaque burden increase prediction: a patient-specific 3D FSI study using IVUS follow-up data, Biomechanics and Modeling in Mechanobiology, 2019, 10.1007/s10237-019-01143-3
  • 4. O. Kafi, A. Sequeira, , Trends in Biomathematics: Mathematical Modeling for Health, Harvesting, and Population Dynamics, 2019, Chapter 17, 255, 10.1007/978-3-030-23433-1_17
  • 5. N. El Khatib, O. Kafi, A. Sequeira, S. Simakov, Yu. Vassilevski, V. Volpert, Vitaly Volpert, Mathematical modelling of atherosclerosis, Mathematical Modelling of Natural Phenomena, 2019, 14, 6, 603, 10.1051/mmnp/2019050
  • 6. Matthew Hirschhorn, Vakhtang Tchantchaleishvili, Randy Stevens, Joseph Rossano, Amy Throckmorton, Fluid–structure interaction modeling in cardiovascular medicine – A systematic review 2017–2019, Medical Engineering & Physics, 2020, 10.1016/j.medengphy.2020.01.008
  • 7. Dalin Tang, Liang Wang, Xiaoya Guo, Akiko Maehara, David Molony, Habib Samady, Jie Zheng, Chun Yang, Jian Zhu, Genshan Ma, Haibo Jia, Kristen Billiar, Mitsuaki Matsumura, Gary S. Mintz, Don P. Giddens, , Biomechanics of Coronary Atherosclerotic Plaque, 2020, 321, 10.1016/B978-0-12-817195-0.00014-7
  • 8. Sang Truong Ha, Hyoung Gwon Choi, Investigation on the effect of density ratio on the convergence behavior of partitioned method for fluid–structure interaction simulation, Journal of Fluids and Structures, 2020, 96, 103050, 10.1016/j.jfluidstructs.2020.103050

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Oualid Kafi, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved