Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

On the mathematical modelling of tumor-induced angiogenesis

1. G. Millán Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos Ⅲ de Madrid, 28911 Leganés, Spain
2. ADAMSS, Universitá degli Studi di Milano, 20133 MILANO, Italy

An angiogenic system is taken as an example of extremely complex ones in the field of Life Sciences, from both analytical and computational points of view, due to the strong coupling between the kinetic parameters of the relevant branching -growth -anastomosis stochastic processes of the capillary network, at the microscale, and the family of interacting underlying biochemical fields, at the macroscale. To reduce this complexity, for a conceptual stochastic model we have explored how to take advantage of the system intrinsic multiscale structure: one might describe the stochastic dynamics of the cells at the vessel tip at their natural microscale, whereas the dynamics of the underlying fields is given by a deterministic mean field approximation obtained by an averaging at a suitable mesoscale. But the outcomes of relevant numerical simulations show that the proposed model, in presence of anastomosis, is not self-averaging, so that the "propagation of chaos" assumption cannot be applied to obtain a deterministic mean field approximation. On the other hand we have shown that ensemble averages over many realizations of the stochastic system may better correspond to a deterministic reaction-diffusion system.

  Figure/Table
  Supplementary
  Article Metrics
Download full text in PDF

Export Citation

Article outline

Copyright © AIMS Press All Rights Reserved