Mathematical Biosciences and Engineering, 2016, 13(6): 1223-1240. doi: 10.3934/mbe.2016040.

Primary: 49K15, 92B05; Secondary: 93C95.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity

1. Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Mo, 63130
2. Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Mo 63130

We consider cancer chemotherapy as an optimal control problem with the aim to minimize a combination of the tumor volume and side effects over an a priori specified therapy horizon when the tumor consists of a heterogeneous agglomeration of many subpopulations. The mathematical model, which accounts for different growth and apoptosis rates in the presence of cell densities, is a finite-dimensional approximation of a model originally formulated by Lorz et al. [18,19] and Greene et al. [10,11] with a continuum of possible traits. In spite of an arbitrarily high dimension, for this problem singular controls (which correspond to time-varying administration schedules at less than maximum doses) can be computed explicitly in feedback form. Interestingly, these controls have the property to keep the entire tumor population constant. Numerical computations and simulations that explore the optimality of bang-bang and singular controls are given. These point to the optimality of protocols that combine a full dose therapy segment with a period of lower dose drug administration.
  Figure/Table
  Supplementary
  Article Metrics

Keywords bang-bang controls; Cancer chemotherapy; singular controls.; tumor heterogeneity; optimal control

Citation: Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences and Engineering, 2016, 13(6): 1223-1240. doi: 10.3934/mbe.2016040

References

  • 1. Future Oncology, 7 (2011), 385-394.
  • 2. Springer Verlag, Series: Mathematics and Applications, Vol. 40, 2003.
  • 3. American Institute of Mathematical Sciences, 2007.
  • 4. Bull. of Math. Biology, 65 (2003), 407-424.
  • 5. Cancer Research, 69 (2009), 4894-4903.
  • 6. Nature, 459 (2009), 508-509.
  • 7. Cancer and Metastasis Review, 20 (2001), 63-68.
  • 8. Mathematical Biosciences, 65 (1983), 291-307.
  • 9. Cancer Research, 66 (2006), 1033-1039.
  • 10. Bull. Math. Biol., 76 (2014), 627-653.
  • 11. Cancer Research, 73 (2013), 7168-7175.
  • 12. in Recent Advances in Optimization and its Applications in Engineering, M. Diehl, F. Glineur, E. Jarlebring and W. Michiels, Eds., (2010), 267-276.
  • 13. Mathematical Biosciences and Engineering (MBE), 2 (2005), 561-578.
  • 14. SIAM J. Contr. Optim., 46 (2007), 1052-1079.
  • 15. Control and Cybernetics, 38 (2009), 1501-1523.
  • 16. Proc. of the 46th IEEE Conference on Decision and Control, 2007, 3768-3773.
  • 17. IEEE Transactions on Automatic Control, 54 (2009), 528-536.
  • 18. ESAIM: Mathematical Modelling and Numerical Analysis, 47 (2013), 377-399.
  • 19. Bull. Math. Biol., 77 (2015), 1-22.
  • 20. Cancer Treatment Reports, 61 (1977), 1307-1317.
  • 21. Cancer Treatment Reports, 70 (1986), 41-61.
  • 22. Nature Reviews|Clinical Oncology, 7 (2010), 455-465.
  • 23. Macmillan, New York, 1964.
  • 24. Springer, New York, 2012
  • 25. Springer, 2015.

 

This article has been cited by

  • 1. Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier, On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach, Mathematical Biosciences and Engineering, 2016, 14, 1, 217, 10.3934/mbe.2017014
  • 2. Urszula Ledzewicz, Heinz Schättler, Application of mathematical models to metronomic chemotherapy: What can be inferred from minimal parameterized models?, Cancer Letters, 2017, 401, 74, 10.1016/j.canlet.2017.03.021
  • 3. Abdelhafid Zenati, Messaoud Chakir, Mohamed Tadjine,  Study of cohabitation and interconnection effects on normal and leukaemic stem cells dynamics in acute myeloid leukaemia , IET Systems Biology, 2018, 10.1049/iet-syb.2018.5026
  • 4. Zenati Abdelelhafid, Chakir Messaoud, Tadjine Mohamed, Global Stability Analysis and Optimal Control Therapy of Blood Cell Production Process (Hematopoiesis) in Acute Myeloid Leukemia., Journal of Theoretical Biology, 2018, 10.1016/j.jtbi.2018.09.001
  • 5. Daniela Iacoviello, , New Developments on Computational Methods and Imaging in Biomechanics and Biomedical Engineering, 2019, Chapter 9, 131, 10.1007/978-3-030-23073-9_9
  • 6. Weiwei Zhang, Xinzhu Meng, Yulin Dong, Periodic Solution and Ergodic Stationary Distribution of Stochastic SIRI Epidemic Systems with Nonlinear Perturbations, Journal of Systems Science and Complexity, 2019, 10.1007/s11424-018-7348-9
  • 7. Abdelhafid Zenati, Massaoud Chakir, Mohamed Tadjine, Mouloud Denai,  Analysis of leukaemic cells dynamics with multi-stage maturation process using a new non-linear positive model with distributed time-delay , IET Control Theory & Applications, 2019, 10.1049/iet-cta.2019.0331

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Shuo Wang, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved