Mathematical Biosciences and Engineering, 2016, 13(5): 1059-1075. doi: 10.3934/mbe.2016030.

Primary: 58F15, 58F17; Secondary: 53C35.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy

1. Instituto Politecnico Nacional, CITEDI, Avenida IPN N 1310, Nueva Tijuana, Tijuana, BC 22435
2. Department of Computer Science and Mathematics, Ariel University Center of Samaria, Ariel, 40700

Understanding the global interaction dynamics between tumor and the immunesystem plays a key role in the advancement of cancer therapy.Bunimovich-Mendrazitsky et al. (2015) developed a mathematical model for thestudy of the immune system response to combined therapy for bladder cancerwith Bacillus Calmette-Guérin (BCG) and interleukin-2 (IL-2) . Weutilized a mathematical approach for bladder cancer treatment model forderivation of ultimate upper and lower bounds and proving dissipativityproperty in the sense of Levinson. Furthermore, tumor clearance conditionsfor BCG treatment of bladder cancer are presented. Our method is based onlocalization of compact invariant sets and may be exploited for a predictionof the cells populations dynamics involved into the model.
  Figure/Table
  Supplementary
  Article Metrics

Keywords IL-2; BCG; localization; ultimate dynamics; compact invariant set.; Dynamic modelling; combined therapy

Citation: K. E. Starkov, Svetlana Bunimovich-Mendrazitsky. Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy. Mathematical Biosciences and Engineering, 2016, 13(5): 1059-1075. doi: 10.3934/mbe.2016030

References

  • 1. Bull. Math. Biol., 69 (2007), 1847-1870.
  • 2. Bull. Math. Biol., 70 (2008), 2055-2076.
  • 3. Math. Med. Biol., 33 (2016), 159-188.
  • 4. Math. Biosci. Eng., 8 (2011), 529-547.
  • 5. Teubner Wiesbaden, 2005.
  • 6. J. Math. Biol., 37 (1998), 235-252.
  • 7. Differ. Equ., 41 (2005), 1669-1676.
  • 8. Phys. Lett. A, 353 (2006), 383-388.
  • 9. Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 1159-1165.
  • 10. J. Urol., 116 (1976), 180-183.
  • 11. IMA J. Appl. Math., 15 (1998), 165-185.
  • 12. Phys. Lett. A, 375 (2011), 3184-3187.
  • 13. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 1037-1042.
  • 14. Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 2565-2570.
  • 15. Nonlinear Anal. Real World Appl., 14 (2013), 1425-1433.
  • 16. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350020, 9pp.
  • 17. Math. Methods Appl. Sci, 37 (2014), 2854-2863.
  • 18. Bull. Math. Biol., 63 (2001), 731-768.

 

This article has been cited by

  • 1. Konstantin E. Starkov, Alexander P. Krishchenko, Ultimate dynamics of the Kirschner–Panetta model: Tumor eradication and related problems, Physics Letters A, 2017, 381, 39, 3409, 10.1016/j.physleta.2017.08.048
  • 2. Farouk Tijjani Saad, Evren Hincal, Bilgen Kaymakamzade, Dynamics of Immune Checkpoints, Immune System, and BCG in the Treatment of Superficial Bladder Cancer, Computational and Mathematical Methods in Medicine, 2017, 2017, 1, 10.1155/2017/3573082
  • 3. Konstantin E. Starkov, On dynamic tumor eradication conditions under combined chemical/anti-angiogenic therapies, Physics Letters A, 2018, 382, 6, 387, 10.1016/j.physleta.2017.12.025
  • 4. Konstantin E. Starkov, Laura Jimenez Beristain, Dynamic Analysis of the Melanoma Model: From Cancer Persistence to Its Eradication, International Journal of Bifurcation and Chaos, 2017, 27, 10, 1750151, 10.1142/S0218127417501516
  • 5. Kristen Abernathy, Zachary Abernathy, Arden Baxter, Meghan Stevens, Global Dynamics of a Breast Cancer Competition Model, Differential Equations and Dynamical Systems, 2017, 10.1007/s12591-017-0346-x
  • 6. Kristen Abernathy, Zachary Abernathy, Kelsey Brown, Claire Burgess, Rebecca Hoehne, Global dynamics of a colorectal cancer treatment model with cancer stem cells, Heliyon, 2017, 3, 2, e00247, 10.1016/j.heliyon.2017.e00247
  • 7. Isa Abdullahi Baba, A fractional-order bladder cancer model with BCG treatment effect, Computational and Applied Mathematics, 2019, 38, 2, 10.1007/s40314-019-0810-z

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, K. E. Starkov, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved