Mathematical Biosciences and Engineering, 2016, 13(5): 935-968. doi: 10.3934/mbe.2016024.

Primary: 35C07, 35K57, 35J61; Secondary: 37B25, 92D30.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Dynamics of a diffusive age-structured HBV model with saturating incidence

1. School of Management, University of Shanghai for Science and Technology, Shanghai 200093
2. College of Science, Shanghai University for Science and Technology, Shanghai 200093
3. Department of Mathematics, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038

In this paper, we propose and investigate an age-structured hepatitis B virus (HBV) model with saturating incidence and spatial diffusion where the viral contamination process is described by the age-since-infection. We first analyze the well-posedness of the initial-boundary values problem of the model in the bounded domain $\Omega\subset\mathbb{R}^n$ and obtain an explicit formula for the basic reproductive number $R_0$ of the model. Then we investigate the global behavior of the model in terms of $R_0$: if $R_0\leq1$, then the uninfected steady state is globally asymptotically stable, whereas if $R_0>1$, then the infected steady state is globally asymptotically stable. In addition, when $R_0>1$, by constructing a suitable Lyapunov-like functional decreasing along the travelling waves to show their convergence towards two steady states as $t$ tends to $\pm\infty$, we prove the existence of traveling wave solutions. Numerical simulations are provided to illustrate the theoretical results.
  Figure/Table
  Supplementary
  Article Metrics

Keywords travelling wave solutions.; spatial diffusion; basic reproductive number; global stability; Age-structured HBV model

Citation: Xichao Duan, Sanling Yuan, Kaifa Wang. Dynamics of a diffusive age-structured HBV model with saturating incidence. Mathematical Biosciences and Engineering, 2016, 13(5): 935-968. doi: 10.3934/mbe.2016024

References

  • 1. J. Virol., 83 (2009), 7659-7667.
  • 2. Lancet., 2 (1981), 1129-1133.
  • 3. Proc. Natl. Acad. Sci. USA., 94 (1997), 6971-6976.
  • 4. SIAM J. Appl. Math., 59 (1998), 455-493.
  • 5. Springer-Verlag, Berlin, 1985.
  • 6. Comp. Math. Appl., 68 (2014), 288-308.
  • 7. Discrete. Contin. Dyn. Syst. B., 7 (2007), 251-273.
  • 8. Proc. R. Soc. Edinb. A., 139 (2009), 459-482.
  • 9. Arch. Ration. Mech. Anal., 195 (2010), 311-331.
  • 10. Nonlinearity, 24 (2011), 2891-2911.
  • 11. Oecologia 122 (2000), 200-209.
  • 12. J. Immunol., 145 (1990), 3442-3449.
  • 13. IMA J. Appl. Math., 75 (2010), 392-417.
  • 14. J. Theor. Biol., 229 (2004), 281-288.
  • 15. Springer-Verlag, New York, 1993.
  • 16. Comp. Math. Appl., 66 (2013), 1488-1497.
  • 17. 2011-01-13.
  • 18. Proc. Natl. Acad. Sci. USA., 93 (1996), 7247-7251.
  • 19. in: Pitman Res. Notes Math. Ser., vol. 247, Longman Scientific & Technical, Harlow, 1991.
  • 20. Cell, 110 (2002), 135-138.
  • 21. J. Dynam. Differential Equations, 23 (2011), 817-842.
  • 22. SIAM. J. Appl. Math., 72 (2012), 25-38.
  • 23. Proc. R. Soc. Lond. A., 115 (1927), 700-721.
  • 24. Proc. R. Soc. Lond. B., 138 (1932), 55-83.
  • 25. Proc. R. Soc. Lond. B., 141 (1933), 94-112.
  • 26. Central African Republic. BMC Infectious Diseases, 13 (2013), p286.
  • 27. Bull. Math. Biol., 72 (2010), 1492-1505.
  • 28. SIAM J. Appl. Math., 70 (2010), 2434-2448.
  • 29. Nonlinear Anal. RWA., 24 (2015), 18-35.
  • 30. Appl. Anal., 89 (2010), 1109-1140.
  • 31. SIAM J. Math. Anal., 37 (2005), 251-275.
  • 32. J. Math. Anal. Appl., 408 (2013), 225-246.
  • 33. Trans. of A.M.S., 321 (1990), 1-44.
  • 34. Nonlinear Anal. RWA., 25 (2015), 64-78.
  • 35. Math. Biosci. Eng., 1 (2004), 267-288.
  • 36. Proc. Natl. Acad. Sci. USA., 93 (1996), 4398-4402.
  • 37. SIAM Rev., 41 (1999), 3-44.
  • 38. Trends Cell Biol., 12 (2002), 569-579.
  • 39. SIAM J. Appl. Math., 71 (2011), 1509-1530.
  • 40. Nonlinear Anal., 8 (1984), 667-682.
  • 41. AIDS, 21 (2007), 163-168.
  • 42. Microb. Infect., 4 (2002), 829-835.
  • 43. SIAM J. Appl. Math., 67 (2007), 731-756.
  • 44. Proc. R. Soc. Lond. A., 457 (2001), 1841-1853.
  • 45. J. Math. Anal. Appl., 329 (2007), 281-297.
  • 46. SIAM J. Appl. Math., 53 (1993), 1447-1479.
  • 47. J. Math. Anal. Appl., 152 (1990), 416-447.
  • 48. Math. Biosci., 210 (2007), 78-95.
  • 49. J. Theor. Biol., 253 (2008), 36-44.
  • 50. J. Math. Anal. Appl., 432 (2015), 289-313.
  • 51. Ann. Intern. Med., 101 (1984), 613-616.
  • 52. Springer, New York, 1996.
  • 53. J. Theor. Biol., 257 (2009), 449-509.
  • 54. Nonlinear Anal. RWA., 15 (2014), 118-139.
  • 55. SIAM J. Appl. Math., 70 (2010), 3121-3139.

 

This article has been cited by

  • 1. Junyuan Yang, Rui Xu, Jiaxu Li, Threshold dynamics of an age–space structured brucellosis disease model with Neumann boundary condition, Nonlinear Analysis: Real World Applications, 2019, 50, 192, 10.1016/j.nonrwa.2019.04.013
  • 2. Junyuan Yang, Xiaoyan Wang, Dynamics and asymptotical profiles of an age-structured viral infection model with spatial diffusion, Applied Mathematics and Computation, 2019, 360, 236, 10.1016/j.amc.2019.05.007

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Xichao Duan, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved