Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Competition for a single resource and coexistence of several species in the chemostat

1. Université de Tunis El Manar, ENIT, LAMSIN, BP 37, Le Belvédère, 1002 Tunis
2. IRSTEA, UMR Itap, 361 rue Jean-François Breton, 34196 Montpellier, France, and Université de Haute Alsace, LMIA, 4 rue des frères Lumière, 68093 Mulhouse

We study a model of the chemostat with several species in competition for a single resource.We take into account the intra-specific interactions between individuals of the same population of micro-organisms andwe assume that the growth rates are increasing and the dilution rates are distinct.Using the concept of steady-state characteristics, we present a geometric characterization of the existence and stability of all equilibria.Moreover, we provide necessary and sufficient conditions on the control parameters of the system to have a positive equilibrium.Using a Lyapunov function, we give a global asymptotic stability result for the competition model of several species.The operating diagram describes the asymptotic behavior of this model with respect to control parametersand illustrates the effect of the intra-specific competition on the coexistence region of the species.
  Figure/Table
  Supplementary
  Article Metrics

Keywords coexistence; intra-specific; competition; Chemostat; operating diagram.

Citation: Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari. Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences and Engineering, 2016, 13(4): 631-652. doi: 10.3934/mbe.2016012

References

  • 1. J. Theor. Biol., 139 (1989), 311-326.
  • 2. Process Biochem., 14 (1979), 16-25.
  • 3. Ph.D thesis, University of Montpellier 2 and University of Tunis el Manar, 2013. https://tel.archives-ouvertes.fr/tel-01018600.
  • 4. J. Math. Anal. Appl., 397 (2013), 292-306.
  • 5. ARIMA J., 14 (2011), 15-30.
  • 6. AIChE J., 53 (2007), 535-539.
  • 7. J. Biol. Dyn., 2 (2008), 1-13.
  • 8. J. Math. Biol., 18 (1983), 255-280.
  • 9. Ecol. Modell., 200 (2007), 393-402.
  • 10. J. Math. Biol., 9 (1980), 115-132.
  • 11. J. Math. Anal. Appl., 319 (2006), 48-60.
  • 12. C. R. Biol., 329 (2006), 40-46.
  • 13. Electron. J. Diff. Eqns., 125 (2007), 1-10.
  • 14. C. R. Acad. Sci. Paris, Ser. I, 340 (2005), 199-204.
  • 15. C. R. Biol., 329 (2006), 63-70.
  • 16. Math. Biosci. Eng., 5 (2008), 539-547.
  • 17. C. R. Biol., 330 (2007), 845-854.
  • 18. C. R. Acad. Sci. Paris Ser. I, 348 (2010), 747-751.
  • 19. Acta Appl. Math., 123 (2013), 201-219.
  • 20. Math. Biosci. Eng., 8 (2011), 827-840.
  • 21. Cambridge University Press, 1995.
  • 22. AIChE J., 25 (1979), 863-872.
  • 23. SIAM J. Appl. Math., 52 (1992), 222-233.
  • 24. J. Biomath, 13 (1998), 282-291.
  • 25. Differential Integral Equations, 11 (1998), 465-491.

 

This article has been cited by

  • 1. Radhouane Fekih-Salem, Claude Lobry, Tewfik Sari, A density-dependent model of competition for one resource in the chemostat, Mathematical Biosciences, 2017, 286, 104, 10.1016/j.mbs.2017.02.007
  • 2. , , The Chemostat, 2017, 217, 10.1002/9781119437215.biblio
  • 3. Mohamed Dellal, Mustapha Lakrib, Tewfik Sari, The operating diagram of a model of two competitors in a chemostat with an external inhibitor, Mathematical Biosciences, 2018, 10.1016/j.mbs.2018.05.004
  • 4. Miled El Hajji, How can inter-specific interferences explain coexistence or confirm the competitive exclusion principle in a chemostat?, International Journal of Biomathematics, 2018, 1850111, 10.1142/S1793524518501115

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Nahla Abdellatif, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved