Mathematical Biosciences and Engineering, 2016, 13(3): 613-629. doi: 10.3934/mbe.2016011.

Primary: 60G40, 62Mxx, 60J65, 60J70; Secondary: 62F10.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity

1. Johannes Kepler University, Altenbergerstraße 69, 4040 Linz

The first passage time density of a diffusion process to a time varying threshold is of primary interest in different fields. Here, we consider a Brownian motion in presence of an exponentially decaying threshold to model the neuronal spiking activity. Since analytical expressions of the first passage time density are not available, we propose to approximate the curved boundary by means of a continuous two-piecewise linear threshold. Explicit expressions for the first passage time density towards the new boundary are provided. First, we introduce different approximating linear thresholds. Then, we describe how to choose the optimal one minimizing the distance to the curved boundary, and hence the error in the corresponding passage time density. Theoretical means, variances and coefficients of variation given by our method are compared with empirical quantities from simulated data. Moreover, a further comparison with firing statistics derived under the assumption of a small amplitude of the time-dependent change in the threshold, is also carried out. Finally, maximum likelihood and moment estimators of the parameters of the model are derived and applied on simulated data.
  Figure/Table
  Supplementary
  Article Metrics

Keywords spike time; Hitting time; time-varying threshold; Brownian motion; maximum likelihood estimator.; firing statistic; adaptive-threshold model; piecewise-linear threshold; boundary crossing probability

Citation: Massimiliano Tamborrino. Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences and Engineering, 2016, 13(3): 613-629. doi: 10.3934/mbe.2016011

References

  • 1. Ric. Mat., 50 (2001), 283-301.
  • 2. Stoch. Models, 21 (2005), 967-980.
  • 3. J. Appl. Probab., 42 (2005), 82-92.
  • 4. Math. Biosci. Eng., 11 (2014), 1-10.
  • 5. Adv. in Appl. Probab., 19 (1987), 784-800.
  • 6. Math. Biosci., 29 (1976), 219-234.
  • 7. J. Neurosci., 21 (2001), 5328-5343.
  • 8. Neural Comput., 15 (2003), 253-278.
  • 9. Phys. Rev. Lett., 85 (2000), 1576-1579.
  • 10. Marcel Dekker, New York, 1989.
  • 11. CRC Press, 1977.
  • 12. Biophys. J., 4 (1964), 41-68.
  • 13. Commun. Stat. Simulat., 28 (1999), 1135-1163.
  • 14. Methodol. Comput. App. Probab., 3 (2001), 215-231.
  • 15. Wiley/VCH, Weinheim, 1993.
  • 16. Biol. Cybern., 99 (2008), 237-239.
  • 17. Front. Comput. Neurosci., 3 (2009), 1-11.
  • 18. J. Stat. Phys., 117 (2004), 703-737.
  • 19. J. Theor. Biol., 232 (2005), 505-521.
  • 20. Stat. Probabil. Lett., 80 (2010), 277-284.
  • 21. Physica A, 390 (2011), 1841-1852.
  • 22. J. Appl. Probab., 36 (1999), 1019-1030.
  • 23. J. Appl. Probab., 38 (2001), 152-164.
  • 24. R Foundation for Statistical Computing, Vienna, Austria, 2014.
  • 25. J. Math. Anal. Appl., 54 (1976), 185-199.
  • 26. Lecture notes in Biomathematics, 14, Springer Verlag, Berlin, 1977.
  • 27. Math. Japonica, 50 (1999), 247-322.
  • 28. in Stochastic Biomathematical Models, Lecture Notes in Mathematics, 2058, Springer Berlin Heidelberg, 2013, 99-148.
  • 29. J. Comput. Appl. Math., 296 (2016), 275-292.
  • 30. Adv. Appl. Probab., 46 (2014), 186-202.
  • 31. J. Appl. Probab., 29 (1992), 448-453.
  • 32. Neural Comput., 11 (1999), 935-951.
  • 33. J. Stat. Phys., 140 (2010), 1130-1156.
  • 34. Lifetime Data Anal., 21 (2015), 331-352.
  • 35. Biol. Cybernet., 30 (1978), 115-123.
  • 36. Cambridge University Press, Cambridge, 1988.
  • 37. J. Appl. Probab., 21 (1984), 695-709.
  • 38. Phys. Rev. E, 83 (2011), 021102.
  • 39. J. App. Probab., 34 (1997), 54-65.
  • 40. Methodol. Comput. Appl. Probab., 9 (2007), 21-40.
  • 41. Ann. Appl. Probab., 19 (2009), 1319-1346.

 

This article has been cited by

  • 1. Chih-Chun Tsai, Chien-Tai Lin, N. Balakrishnan, , Statistical Modeling for Degradation Data, 2017, Chapter 6, 105, 10.1007/978-981-10-5194-4_6
  • 2. Ryota Kobayashi, Katsunori Kitano, Impact of slow K+ currents on spike generation can be described by an adaptive threshold model, Journal of Computational Neuroscience, 2016, 40, 3, 347, 10.1007/s10827-016-0601-0
  • 3. Wilhelm Braun, Rüdiger Thul, Sign changes as a universal concept in first-passage-time calculations, Physical Review E, 2017, 95, 1, 10.1103/PhysRevE.95.012114
  • 4. Lubomir Kostal, Petr Lansky, Michael Stiber, Statistics of inverse interspike intervals: The instantaneous firing rate revisited, Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28, 10, 106305, 10.1063/1.5036831

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Massimiliano Tamborrino, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved