Mathematical Biosciences and Engineering, 2016, 13(1): 135-157. doi: 10.3934/mbe.2016.13.135.

Primary: 34K20, 92D30; Secondary: 34K18.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A delayed HIV-1 model with virus waning term

1. Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, 3041#, 2 Yi-Kuang street, Harbin, 150080
2. Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5
3. Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, 3041#, 2 Yi-Kuang Street, Harbin, 150080

In this paper, we propose and analyze a delayed HIV-1 model with CTL immune response and virus waning. The two discrete delays stand for the time for infected cells to produce viruses after viral entry and for the time for CD$8^+$ T cell immune response to emerge to control viral replication. We obtain the positiveness and boundedness of solutions and find the basic reproduction number $R_0$. If $R_0<1 then="" the="" infection-free="" steady="" state="" is="" globally="" asymptotically="" stable="" and="" the="" infection="" is="" cleared="" from="" the="" t-cell="" population="" whereas="" if="" r_0="">1$, then the system is uniformly persistent and the viral concentration maintains at some constant level. The global dynamics when $R_0>1$ is complicated. We establish the local stability of the infected steady state and show that Hopf bifurcation can occur. Both analytical and numerical results indicate that if, in the initial infection stage,the effect of delays on HIV-1 infection is ignored, then the risk of HIV-1 infection (if persists) will be underestimated. Moreover, the viral load differs from that without virus waning. These results highlight the important role of delays and virus waning on HIV-1 infection.
  Figure/Table
  Supplementary
  Article Metrics

Keywords delay; permanence.; stability; CTLs; HIV-1 infection; virus waning; immune response

Citation: Bing Li, Yuming Chen, Xuejuan Lu, Shengqiang Liu. A delayed HIV-1 model with virus waning term. Mathematical Biosciences and Engineering, 2016, 13(1): 135-157. doi: 10.3934/mbe.2016.13.135

References

  • 1. MMWR Morb Mortal Wkly Rep, 31 (1982), 652-654.
  • 2. New Jersey, California, MMWR Morb Mortal Wkly Rep, 31 (1982), 665-667.
  • 3. MMWR Morb Mortal Wkly Rep, 31 (1983), 697-698.
  • 4. J. Theor. Biol., 259 (2009), 751-759.
  • 5. Math. Biosci., 200 (2006), 1-27.
  • 6. J. Math. Biol., 48 (2004), 545-562.
  • 7. SIAM J. Appl. Math., 63 (2003), 1313-1327.
  • 8. Nature Medicine, 9 (2003), 839-843.
  • 9. Science, 298 (2002), 1728-1730.
  • 10. Springer-Verlag, New York, 1993.
  • 11. J. Theor. Biol., 236 (2005), 137-153.
  • 12. Proc. Natl. Acad. Sci. USA, 93 (1996), 7247-7251.
  • 13. SIAM J. Appl. Math., 70 (2010), 2693-2708.
  • 14. The New England Journal of Medicine, 344 (2001), 1764-1772.
  • 15. Journal of Biological Systems, 21 (2013), 1340012, 20pp.
  • 16. SIAM J. Appl. Math., 70 (2010), 2434-2448.
  • 17. Mathematical Biosciences and Engineering, 7 (2010), 675-685.
  • 18. Mathematical Biosciences and Engineering, 12 (2015), 431-449.
  • 19. Science, 298 (2002), 1727-1728.
  • 20. Science, 272 (1996), 74-79.
  • 21. Oxford University Press, Oxford, 2000.
  • 22. Mathematical Biosciences, 235 (2012), 98-109.
  • 23. PLoS Comput Biol., 7 (2011), e1001058, 17 pp.
  • 24. Science, 271 (1996), 1582-1586.
  • 25. Journal of Virology, 84 (2010), 6096-6102.
  • 26. Bulletin of Mathematical Biology, 69 (2007), 2027-2060.
  • 27. SIAM J. Appl. Math., 73 (2013), 1280-1302.
  • 28. Nonlinear Anal., 47 (2001), 6169-6179.
  • 29. Mathematical biosciences and engineering, 12 (2015), 185-208.
  • 30. J. Theor. Biol., 203 (2000), 285-301.
  • 31. Mathematical Methods in the Applied Science, 36 (2013), 125-142.
  • 32. J. Math. Biol., 67 (2013), 901-934.
  • 33. Physica D, 130 (1999), 255-272.
  • 34. Springer, Berlin, 2003.

 

This article has been cited by

  • 1. Cuicui Jiang, Kaifa Wang, Lijuan Song, Global dynamics of a delay virus model with recruitment and saturation effects of immune responses, Mathematical Biosciences and Engineering, 2017, 14, 5/6, 1233, 10.3934/mbe.2017063
  • 2. A.M. Elaiw, N.H. AlShamrani, Stability of latent pathogen infection model with adaptive immunity and delays, Journal of Integrative Neuroscience, 2018, 1, 10.3233/JIN-180087
  • 3. A. M. Elaiw, A. A. Raezah, A. S. Alofi, Stability of a general delayed virus dynamics model with humoral immunity and cellular infection, AIP Advances, 2017, 7, 6, 065210, 10.1063/1.4989569
  • 4. A. M. Elaiw, A. A. Raezah, Stability of general virus dynamics models with both cellular and viral infections and delays, Mathematical Methods in the Applied Sciences, 2017, 40, 16, 5863, 10.1002/mma.4436
  • 5. A. M. Elaiw, N. H. AlShamrani, Stability of a general delay-distributed virus dynamics model with multi-staged infected progression and immune response, Mathematical Methods in the Applied Sciences, 2017, 40, 3, 699, 10.1002/mma.4002
  • 6. A. M. Elaiw, A. A. Raezah, B. S. Alofi, Dynamics of delayed pathogen infection models with pathogenic and cellular infections and immune impairment, AIP Advances, 2018, 8, 2, 025323, 10.1063/1.5023752
  • 7. M. Mahrouf, K. Hattaf, N. Yousfi, G. Bocharov, S. Simakov, Yu. Vassilevski, V. Volpert, Dynamics of a Stochastic Viral Infection Model with Immune Response, Mathematical Modelling of Natural Phenomena, 2017, 12, 5, 15, 10.1051/mmnp/201712502
  • 8. Ahmed M. Elaiw, Taofeek O. Alade, Saud M. Alsulami, Analysis of within-host CHIKV dynamics models with general incidence rate, International Journal of Biomathematics, 2018, 1850062, 10.1142/S1793524518500626
  • 9. HONGYING SHU, LIN WANG, JOINT IMPACTS OF THERAPY DURATION, DRUG EFFICACY AND TIME LAG IN IMMUNE EXPANSION ON IMMUNITY BOOSTING BY ANTIVIRAL THERAPY, Journal of Biological Systems, 2017, 25, 01, 105, 10.1142/S0218339017500061
  • 10. Shyan-Shiou Chen, Chang-Yuan Cheng, Yasuhiro Takeuchi, Stability analysis in delayed within-host viral dynamics with both viral and cellular infections, Journal of Mathematical Analysis and Applications, 2016, 442, 2, 642, 10.1016/j.jmaa.2016.05.003

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Bing Li, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved