Mathematical Biosciences and Engineering, 2016, 13(2): 261-279. doi: 10.3934/mbe.2015002.

Primary: 35Q92, 92D25; Secondary: 47N60, 35B35.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Structured populations with diffusion and Feller conditions

1. Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk
2. Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk

We prove a weak maximum principle for structured population models with dynamic boundary conditions. We establish existence and positivity of solutions of these models and investigate the asymptotic behaviour of solutions. In particular, we analyse so called size profile.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Size-structured model; diffusion; Fourier analysis.; size profile; maximum principle; Feller boundary condition

Citation: Agnieszka Bartłomiejczyk, Henryk Leszczyński. Structured populations with diffusion and Feller conditions. Mathematical Biosciences and Engineering, 2016, 13(2): 261-279. doi: 10.3934/mbe.2015002

References

  • 1. Appl. Math., 45 (2000), 69-80.
  • 2. Birkhauser, 2014.
  • 3. Appl. Numer. Math., 94 (2015), 140-148.
  • 4. Nonlinear. Anal., 57 (2004), 63-84.
  • 5. Disc. Cont. Dyn. Sys. Series B, 17 (2012), 2313-2327.
  • 6. J. Evol. Equat., 12 (2012), 495-512.
  • 7. SIAM, Philadelphia, 1998.
  • 8. Springer, New York, 2000.
  • 9. J. Math. Anal. App., 328 (2007), 119-136.
  • 10. Math. Biosci. Eng., 8 (2011), 503-513.
  • 11. Trans. Amer. Math. Soc., 77 (1954), 1-31.
  • 12. Prentice-Hall, Englewood Cliffs, N.J. 1964.
  • 13. Math. Biosc., 54 (1981), 49-59.
  • 14. Math. Biosci. Eng., 7 (2010), 37-49.
  • 15. J. Math. Anal. Appl., 297 (2004), 234-256.
  • 16. Non. Anal., 73 (2010), 3162-3170.
  • 17. Nauka, Moscow, 1967; (Translation of Mathematical Monographs, Vol. 23 Am. Math. Soc., Providence, R.I., 1968).
  • 18. Lecture Notes in Mathematics, Vol.1936, Springer-Verlag, Berlin, Heidelberg, 2008.
  • 19. Lect. Notes in Biomath. Vol. 68, Springer, Berlin, 1986.
  • 20. Frontiers in Mathematics series, Birkhäuser, Boston, 2007.
  • 21. SIAM J. Appl. Math., 48 (1988), 549-591.
  • 22. SIAM J. Math. Anal., 19 (1988), 1108-1118.
  • 23. Springer-Verlag, Berlin, Heidelberg, 1998.
  • 24. Theory Probab. Appl., 4 (1959), 164-177.

 

This article has been cited by

  • 1. Agnieszka Bartłomiejczyk, Henryk Leszczński, Agnieszka Marciniak, Rothe’s method for physiologically structured models with diffusion, Mathematica Slovaca, 2018, 68, 1, 211, 10.1515/ms-2017-0094
  • 2. Agnieszka Bartłomiejczyk, Monika Wrzosek, , Semigroups of Operators – Theory and Applications, 2020, Chapter 8, 137, 10.1007/978-3-030-46079-2_8

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Agnieszka Bartłomiejczyk, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved