Mathematical Biosciences and Engineering, 2016, 13(2): 249-259. doi: 10.3934/mbe.2015001.

Primary: 92D30; Secondary: 34C60, 92B05.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Seasonality and the effectiveness of mass vaccination

1. Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109

Many infectious diseases have seasonal outbreaks, which may be driven by cyclical environmental conditions (e.g., an annual rainy season) or human behavior (e.g., school calendars or seasonal migration).If a pathogen is only transmissible for a limited period of time each year,then seasonal outbreaks could infect fewer individuals than expected given the pathogen's in-season transmissibility.Influenza, with its short serial interval and long season,probably spreads throughout a population until a substantial fraction of susceptible individuals are infected.Dengue, with a long serial interval and shorter season,may be constrained by its short transmission season rather than the depletion of susceptibles.Using mathematical modeling, we show that mass vaccination is most efficient,in terms of infections prevented per vaccine administered,at high levels of coverage for pathogens that have relatively long epidemicseasons, like influenza, and at low levels of coverage for pathogens with short epidemic seasons, like dengue.Therefore, the length of a pathogen's epidemic season may need to beconsidered when evaluating the costs and benefits of vaccination programs.
  Figure/Table
  Supplementary
  Article Metrics

Keywords epidemics; infectious disease; vaccination; Mathematical model; seasonality.

Citation: Dennis L. Chao, Dobromir T. Dimitrov. Seasonality and the effectiveness of mass vaccination. Mathematical Biosciences and Engineering, 2016, 13(2): 249-259. doi: 10.3934/mbe.2015001

References

  • 1. Ecol Lett, 9 (2006), 467-484.
  • 2. Oxford University Press, Oxford, United Kingdom, 1991.
  • 3. J Theor Biol, 110 (1984), 665-679.
  • 4. Am J Trop Med Hyg, 89 (2013), 1066-1080.
  • 5. in Current Topics in Microbiology and Immunology: Cholera Outbreaks (eds. G. B. Nair and Y. Takeda), vol. 379, Springer-Verlag, Berlin, 2014, 195-209.
  • 6. BMC Infect Dis, 1 (2001), p1.
  • 7. Epidemiology, 20 (2009), 344-347.
  • 8. J Math Biol, 28 (1990), 365-382.
  • 9. PLoS Negl Trop Dis, 8 (2014), e3343.
  • 10. Proc Biol Sci, 277 (2010), 2775-2782.
  • 11. Clin Infect Dis, 52 (2011), 911-916.
  • 12. Clin Microbiol Infect, 18 (2012), 946-954.
  • 13. Annu Rev Public Health, 28 (2007), 127-143.
  • 14. Rev Infect Dis, 5 (1983), 463-466.
  • 15. Proc Biol Sci, 273 (2006), 2541-2550.
  • 16. Annu Rev Entomol, 53 (2008), 273-291.
  • 17. SIAM Review, 42 (2000), 599-653.
  • 18. Proc Biol Sci, 269 (2002), 335-343.
  • 19. Proceedings of the Royal Society of London. Series A, 115 (1927), 700-721.
  • 20. Proc Natl Acad Sci U S A, 108 (2011), 7460-7465.
  • 21. Math Biosci, 23 (1975), 33-46.
  • 22. Oxford University Press, Oxford, United Kingdom, 1957.
  • 23. Proc Biol Sci, 281 (2014), 20132438.
  • 24. Epidemics, 13 (2015), 17-27.
  • 25. J Infect Dis, 195 (2007), 1007-1013.
  • 26. Math Biosci, 149 (1998), 23-36.
  • 27. Math Biosci, 75 (1985), 3-22.
  • 28. Influenza Other Respir Viruses, 4 (2010), 295-306.
  • 29. Emerg Infect Dis, 14 (2008), 1081-1088.
  • 30. Math and Comp Mod, 31 (2000), 207-215.
  • 31. Math Biosci, 180 (2002), 29-48.
  • 32. World Development, 37 (2009), 399-409.

 

This article has been cited by

  • 1. Yali Yang, Yiqun Li, Jianquan Li, Epidemic characteristics of two classic models and the dependence on the initial conditions, Mathematical Biosciences and Engineering, 2016, 13, 5, 999, 10.3934/mbe.2016027
  • 2. M. A. Aziz-Alaoui, Sunita Gakkhar, Benjamin Ambrosio, Arti Mishra, A network model for control of dengue epidemic using sterile insect technique, Mathematical Biosciences and Engineering, 2017, 15, 2, 441, 10.3934/mbe.2018020

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Dennis L. Chao, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved