Mathematical Biosciences and Engineering, 2015, 12(5): 907-915. doi: 10.3934/mbe.2015.12.907.

Primary: 80A20, 92C05; Secondary: 92C30.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Thermal detection of a prevascular tumor embedded in breast tissue

1. School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623-5603
2. Department of Mathematics and Statistics, Rochester Institute of Technology, Rochester, New York 14623

This paper presents a mathematical model of heat transfer in a prevascular breast tumor. The model uses the steady state temperature of the breast at the skin surface to determine whether there is an underlying tumor and if so, verifies whether the tumor is growing or dormant. The model is governed by the Pennes equations and we present numerical simulations for versions of the model in two and three dimensions.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Heat transfer; prevascular tumor; temperature distribution.

Citation: Ephraim Agyingi, Tamas Wiandt, Sophia A. Maggelakis. Thermal detection of a prevascular tumor embedded in breast tissue. Mathematical Biosciences and Engineering, 2015, 12(5): 907-915. doi: 10.3934/mbe.2015.12.907

References

  • 1. Mathematical and Computer Modelling: An International Journal, 53 (2011), 1527-1534.
  • 2. The American Journal of Surgery, 196 (2008), 523-526.
  • 3. The Journal of Physiology, 530 (2001), 565-574.
  • 4. Madame Curie Bioscience Database . Austin (TX): Landes Bioscience, 2000.
  • 5. New England Journal of Medicine, 328 (1993), 1237-1243.
  • 6. Breast Cancer Management, 2 (2013), 163-172.
  • 7. FL:CRC/Taylor & Francis; 2006.
  • 8. in Bioengineering Heat Transfer(ed. Y. I. Cho), Academic Press, (1992), 19-151.
  • 9. Computers in Biology and Medicine, 34 (2004), 495-521.
  • 10. New England Journal of Medicine, 285 (1971), 1182-1186.
  • 11. Nature, 427 (2004), p787.
  • 12. Revista Mexicana de Fisica, 53 (2007), 323-326.
  • 13. QIRT Journal, 8 (2011), 139-148.
  • 14. Studies in Applied Mathematics, LI (1972), 317-340.
  • 15. Journal of the Royal Society Interface, 11 (2013), p1124.
  • 16. Canadian Medical Association Journal, 75 (1956), 309-310.
  • 17. Canadian Medical Association Journal, 88 (1963), 68-70.
  • 18. Journal of Medical Engineering & Technology, 33 (2009), 274-280.
  • 19. Applied Mathematics Letters, 8 (1995), 7-10.
  • 20. Journal of Biomechanical Engineering, 129 (2006), 33-39.
  • 21. Biophysical Journal, 46 (1984), 343-348.
  • 22. Engineering Applications of Artificial Intelligence, 20 (2007), 647-655.
  • 23. J. Appl. Physiol, 1 (1948), 93-122.
  • 24. Computer Methods in Biomechanics and Biomedical Engineering, 2 (1999), 187-199.

 

This article has been cited by

  • 1. Ephraim Agyingi, Tamas Wiandt, Sophia Maggelakis, , Mathematical and Computational Approaches in Advancing Modern Science and Engineering, 2016, Chapter 16, 167, 10.1007/978-3-319-30379-6_16
  • 2. Itzel A. Avila-Castro, Angel Ramon Hernández-Martínez, Miriam Estevez, Martha Cruz, Rodrigo Esparza, Ramiro Pérez, Angel Luis Rodríguez, Thorax thermographic simulator for breast pathologies, Journal of Applied Research and Technology, 2017, 15, 2, 143, 10.1016/j.jart.2017.01.008
  • 3. Mamta Agrawal, K. R. Pardasani, , Numerical Heat Transfer and Fluid Flow, 2019, Chapter 28, 241, 10.1007/978-981-13-1903-7_28

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Ephraim Agyingi, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved