Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Optimal design for parameter estimation in EEG problems in a 3D multilayered domain

1. Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC 27695-8212
2. Centro de Matemática Aplicada, Universidad de San Martín, Buenos Aires
3. Instituto de Ciencias, Universidad Nacional Gral. Sarmiento, Buenos Aires
4. Dep. de Matemática, Facultad de Ingeniería, Universidad de Buenos Aires

The fundamental problem of collecting data in the ``best way'' in order to assure statistically efficient estimation of parameters is known as Optimal Experimental Design. Many inverse problems consist in selecting best parameter values of a given mathematical model based on fits to measured data. These are usually formulated as optimization problems and the accuracy of their solutions depends not only on the chosen optimization scheme but also on the given data.We consider an electromagnetic interrogation problem, specifically one arising in an electroencephalography (EEG) problem, of finding optimal number and locations for sensors for source identification in a 3D unit sphere from data on its boundary. In this effort we compare the use of the classical $D$-optimal criterion for observation points as opposed to that for a uniform observation mesh. We consider location and best number of sensors and report results based on statistical uncertainty analysis of the resulting estimated parameters.
  Figure/Table
  Supplementary
  Article Metrics

Keywords asymptotic error analysis.; optimal design in 3D EEG analysis; parameter estimation; Electromagnetic inverse problems

Citation: H. T. Banks, D. Rubio, N. Saintier, M. I. Troparevsky. Optimal design for parameter estimation in EEG problems in a 3D multilayered domain. Mathematical Biosciences and Engineering, 2015, 12(4): 739-760. doi: 10.3934/mbe.2015.12.739

References

  • 1. Inverse Problems, 18 (2002), 1659-1672.
  • 2. Applied Math Letters, 40 (2015), 84-89.
  • 3. Inverse Problems, 10 (1994), 995-1007.
  • 4. J. Optical Society of America A, 6 (1989), 1441-1446.
  • 5. Inverse Problems, 12 (1996), 565-577.
  • 6. CRSC-TR13-16, Center for Research in Scientific Computation, North Carolina State University, 2013. Mathematical Biosciences and Engineering (Submitted).
  • 7. Applied Math Letters, 43 (2015), 10-18.
  • 8. Frontiers in Applied Mathematics, Vol. FR21, SIAM, Philadelphia, PA, 2000.
  • 9. J. Inverse and Ill-posed Problems, 15 (2007), 683-708.
  • 10. J. Inverse and Ill-posed Problems, 18 (2010), 25-83.
  • 11. CRSC-TR14-15, N. C. State University, Raleigh, NC, November, 2014; J. Biological Dynamics, submitted.
  • 12. Inverse Problems, 27 (2011), 075002, 31pp.
  • 13. CRC Press, Boca Raton, FL., 2014.
  • 14. J. Inverse and Ill-Posed Problems, 8 (2000), 487-504.
  • 15. Inverse Problems in Sci. and Engr., 22 (2014), 557-590.
  • 16. Applied Mathematics Letters, 26 (2013), 10-14.
  • 17. CRSC-TR13-01, N. C. State University, Raleigh, NC, January, 2013; Proceedings 2013 SIAM Conference on Control Theory, CT13, SIAM, (2013), 83-90.
  • 18. MACI, 4 (2013), 521-524. ISSN 2314-3282.
  • 19. Proceedings of the American Control Conference, (2014), 2753-2758.
  • 20. Revue ARIMA, 13 (2010), 47-62.
  • 21. Inverse Problems, 28 (2012), 1-24.
  • 22. Springer Applied Mathematical Sciences, Vol. 93, 3rd ed., Springer Verlag, 2013.
  • 23. Math Methods Applied Science, 20 (1997), 385-401.
  • 24. J. Appl. Phys., 64 (1988), 464-470.
  • 25. IEEE Trans. On Signal Processing, 50 (2002), 1565-1572.
  • 26. Inverse Problems, 16 (2000), 651-663.
  • 27. Neurology and Clinical Neurophysiology, 2004 (2004), 102.
  • 28. J. Inv. Ill-Posed Problems, 14 (2006), 331-353.
  • 29. Phys. Med. Biol., 41 (1996), 2231-2249.
  • 30. Phys. Med. Biol., 41 (1996), 2251-2269.
  • 31. Phys. Med. Biol., 41 (1996), 2271-2293.
  • 32. Reviews of Modern Physics, 65 (1993), 414-487.
  • 33. IEEE Trans. Biomedical Engineering, 49 (2002), 533-539.
  • 34. Mathematics and Computers in Simulation, 66 (2004), 255-265.
  • 35. Inverse Problems, 21 (2005), 1207-1223.
  • 36. Trans. Biomedical Engineering, 46 (1999), 245-259.
  • 37. Latin American Applied Research, 36 (2006), 87-92.
  • 38. Phy. Med Biol., 32 (1987), 11-22.
  • 39. IEEE Trans. Biomedical Engineering, 49 (2002), 409-418.
  • 40. John Wiley & Sons, Inc., New York, 1989.
  • 41. J. of Applied Mathematics, 12 (2003), 647-656.
  • 42. Mathematical and Computer Modeling, 41 (2005), 1437-1443.
  • 43. IEEE Trans. Biomed. Eng., 2 (2004), 1339-1342.

 

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, H. T. Banks, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved