Mathematical Biosciences and Engineering, 2015, 12(4): 643-660. doi: 10.3934/mbe.2015.12.643.

Primary: 92D25, 92D15; Secondary: 37N25.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

The evolutionarydynamics of a population model with a strong Allee effect

1. Department of Mathematics, Interdisciplinary Program in Applied Mathematics, 617 N Santa Rita, Tucson, Arizona, 85721

An evolutionary game theoretic model for a population subject to predationand a strong Allee threshold of extinction is analyzed using, among othermethods, Poincaré-Bendixson theory. The model is a nonlinear, planeautonomous system whose state variables are population density and the meanof a phenotypic trait, which is subject to Darwinian evolution, thatdetermines the population's inherent (low density) growth rate (fitness). Atrade-off is assumed in that an increase in the inherent growth rate resultsin a proportional increase in the predator's attack rate. The main resultsare that orbits equilibrate (there are no cycles or cycle chains ofsaddles), that the extinction set (or Allee basin) shrinks when evolutionoccurs, and that the meant trait component of survival equilibria occur atmaxima of the inherent growth rate (as a function of the trait).
  Figure/Table
  Supplementary
  Article Metrics

Keywords Population dynamics; evolution; evolutionary game theory; Allee effects; evolutionarily stable strategy.

Citation: Jim M. Cushing. The evolutionarydynamics of a population model with a strong Allee effect. Mathematical Biosciences and Engineering, 2015, 12(4): 643-660. doi: 10.3934/mbe.2015.12.643

References

  • 1. Ecology Letters, 4 (2001), 166-175.
  • 2. University of Chicago Press, Chicago, 1931.
  • 3. 3rd edition, William Heineman Ltd, London and Toronto, 1941.
  • 4. W. B. Saunders Company, Philadelphia, 1949.
  • 5. Journal of Theoretical Biology, 218 (2002), 375-394.
  • 6. TREE, 14 (1999), 405-410.
  • 7. Oxford University Press, Oxford, Great Britain, 2008.
  • 8. Journal of Biological Dynamics, 8 (2014), 57-73.
  • 9. Journal of Biological Dynamics, 6 (2012), 941-958.
  • 10. Natural Resource Modeling, 3 (1989), 481-538.
  • 11. Princeton University Press, Princeton, New Jersey, 2008.
  • 12. Classics in Applied Mathematics 46, SIAM, Philadelphia, USA, 2005.
  • 13. Journal of Biological Dynamics , 4 (2010), 397-408.
  • 14. Pearson Education Limited, Prentice Hall, Essex, England, 1996.
  • 15. Theoretical Population Biology, 27 (1985), 27-50.
  • 16. Journal of Difference Equations and Applications, 10 (2004), 1251-1265.
  • 17. Evolution, 30 (1976), 314-334.
  • 18. Ecology, 63 (1982), 607-615.
  • 19. Theoretical Population Biology, 43 (1993), 141-158.
  • 20. Iowa State College Press, Ames, Iowa, USA, 1937.
  • 21. Princeton University Press, Princeton, New Jersey, USA, 2007.
  • 22. Journal of Theoretical Biology, 199 (1999), 407-414.
  • 23. Theoretical Population Biology, 64 (2003), 201-209.
  • 24. Cambridge University Press, New York, 2005.
  • 25. Ecological Modelling, 124 (1999), 183-192.

 

This article has been cited by

  • 1. Yun Kang, Dynamics of a generalized Ricker–Beverton–Holt competition model subject to Allee effects, Journal of Difference Equations and Applications, 2016, 22, 5, 687, 10.1080/10236198.2015.1135910
  • 2. Wendi Wang, Population dispersal and Allee effect, Ricerche di Matematica, 2016, 65, 2, 535, 10.1007/s11587-016-0273-0
  • 3. Marisabel Rodriguez-Rodriguez, Yun Kang, Colony and evolutionary dynamics of a two-stage model with brood cannibalism and division of labor in social insects, Natural Resource Modeling, 2016, 29, 4, 633, 10.1111/nrm.12119
  • 4. N. T. Dieu, N. H. Du, H. D. Nguyen, G. Yin, Protection Zones for Survival of Species in Random Environment, SIAM Journal on Applied Mathematics, 2016, 76, 4, 1382, 10.1137/15M1032004
  • 5. John M. Drake, Luděk Berec, Andrew M. Kramer, , Reference Module in Earth Systems and Environmental Sciences, 2018, 10.1016/B978-0-12-409548-9.10587-1
  • 6. Yun Kang, Marisabel Rodriguez-Rodriguez, Stephen Evilsizor, Ecological and evolutionary dynamics of two-stage models of social insects with egg cannibalism, Journal of Mathematical Analysis and Applications, 2015, 430, 1, 324, 10.1016/j.jmaa.2015.04.079

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Jim M. Cushing, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved