Mathematical Biosciences and Engineering, 2015, 12(3): 625-642. doi: 10.3934/mbe.2015.12.625.

Primary: 97M60; Secondary: 92B05.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A population model capturing dynamics of tuberculosis granulomas predicts host infection outcomes

1. 6775 Medical Science Building II, Ann Arbor, MI 48109-5620
2. B28-G045W NCRC, Ann Arbor, MI 48109-5620
3. 6730 Medical Science Building II, Ann Arbor, MI 48109-5620

Granulomas play a centric role in tuberculosis (TB) infection progression. Multiple granulomas usually develop within a single host. These granulomas are not synchronized in size or bacteria load, and will follow different trajectories over time. How the fate of individual granulomas influence overall infection outcome at host scale is not understood, although computational models have been developed to predict single granuloma behavior. Here we present a within-host population model that tracks granulomas in two key organs during Mycobacteria tuberculosis (Mtb) infection: lung and lymph nodes (LN). We capture various time courses of TB progression, including latency and reactivation. The model predicts that there is no steady state; rather it is a continuous process of progressing to active disease over differing time periods. This is consistent with recently posed ideas suggesting that latent TB exists as a spectrum of states and not a single state. The model also predicts a dual role for granuloma development in LNs during Mtb infection: in early phases of infection granulomas suppress infection by providing additional antigens to the site of immune priming; however, this induces a more rapid reactivation at later stages by disrupting immune responses. We identify mechanisms that strongly correlate with better host-level outcomes, including elimination of uncontained lung granulomas by inducing low levels of lung tissue damage and inhibition of bacteria dissemination within the lung.
  Figure/Table
  Supplementary
  Article Metrics

Keywords within-host model.; TB; granuloma; ODE model; infectious disease

Citation: Chang Gong, Jennifer J. Linderman, Denise Kirschner. A population model capturing dynamics of tuberculosis granulomas predicts host infection outcomes. Mathematical Biosciences and Engineering, 2015, 12(3): 625-642. doi: 10.3934/mbe.2015.12.625

References

  • 1. Environmental health perspectives, 55 (1984), 25-36.
  • 2. Nature reviews. Microbiology, 7 (2009), 845-855.
  • 3. Nature Medicine, 1 (1995), 815-821.
  • 4. Inflammation & allergy drug targets, 6 (2007), 27-39.
  • 5. Mathematical Biosciences and Engineering, 6 (2009), 209-237.
  • 6. Journal of mathematical biology, 35 (1997), 629-656.
  • 7. Infection and Immunity, 70 (2002), 4501-4509.
  • 8. PloS one, 8 (2013), e68680.
  • 9. Sci Transl Med, 6 (2014), p265ra167.
  • 10. The American review of respiratory disease, 133 (1986), 321-340.
  • 11. Archives of internal medicine, 163 (2003), 1009-1021.
  • 12. 2004.
  • 13. Journal of the Royal Society, Interface / the Royal Society, 7 (2010), 873-885.
  • 14. The Lancet, 352 (1998), 1886-1891.
  • 15. Journal of immunology (Baltimore, Md. : 1950), 188 (2012), 3169-3178.
  • 16. Frontiers in physiology, 2012.
  • 17. PLoS computational biology, 6 (2010), e1000778, 19pp.
  • 18. Theoretical population biology, 57 (2000), 235-247.
  • 19. Annual review of immunology, 19 (2001), 93-129.
  • 20. Journal of theoretical biology, 335 (2013), 169-184.
  • 21. Journal of theoretical biology, 289 (2011), 197-205.
  • 22. Theoretical population biology, 55 (1999), 94-109.
  • 23. Immunological reviews, 216 (2007), 93-118.
  • 24. Antimicrobial agents and chemotherapy, 57 (2013), 4237-4244.
  • 25. Nature medicine, 20 (2014), 75-79.
  • 26. Infection and immunity, 77 (2009), 4631-4642.
  • 27. Journal of immunology (Baltimore, Md. : 1950), 184 (2010), 2873-2885.
  • 28. Mathematical biosciences and engineering : MBE, 3 (2006), 661-682.
  • 29. Journal of theoretical biology, 292 (2012), 44-59.
  • 30. Journal of theoretical biology, 280 (2011), 50-62.
  • 31. Journal of theoretical biology, 254 (2008), 178-196.
  • 32. Journal of theoretical biology, 227 (2004), 463-486.
  • 33. Wiley interdisciplinary reviews. Systems biology and medicine, 3 (2011), 479-489.
  • 34. SIAM Journal on Applied Mathematics, 62 (2002), 1634-1656.
  • 35. Mathematical Biosciences, 180 (2002), 161-185.
  • 36. Journal of Theoretical Biology, 223 (2003), 391-404.
  • 37. Annual review of immunology, 31 (2013), 475-527.
  • 38. 2013.
  • 39. Int Rev Cytol, 128 (1991), 215-260.
  • 40. Science, 329 (2010), 538-541.
  • 41. Nature reviews. Immunology, 12 (2012), 352-366.
  • 42. Proceedings of the National Academy of Sciences of the United States of America, 102 (2005), 8327-8332.
  • 43. Journal of theoretical biology, 231 (2004), 357-376.
  • 44. Mathematical biosciences and engineering: MBE, 1 (2004), 81-93.
  • 45. Infection and immunity, 81 (2013), 2909-2919.
  • 46. The Journal of Immunology, 166 (2001), 1951-1967.
  • 47. The Journal of Immunology, 168 (2002), 4968-4979.
  • 48. Nature reviews. Microbiology, 6 (2008), 520-528.

 

This article has been cited by

  • 1. Phillip P Salvatore, Alvaro Proaño, Emily A Kendall, Robert H Gilman, David W Dowdy, Linking Individual Natural History to Population Outcomes in Tuberculosis, The Journal of Infectious Diseases, 2018, 217, 1, 112, 10.1093/infdis/jix555
  • 2. Denise Kirschner, Elsje Pienaar, Simeone Marino, Jennifer J. Linderman, A review of computational and mathematical modeling contributions to our understanding of Mycobacterium tuberculosis within-host infection and treatment, Current Opinion in Systems Biology, 2017, 3, 170, 10.1016/j.coisb.2017.05.014
  • 3. Sudha Bhavanam, Gina R Rayat, Monika Keelan, Dennis Kunimoto, Steven J Drews, Understanding the pathophysiology of the human TB lung granuloma usingin vitrogranuloma models, Future Microbiology, 2016, 11, 8, 1073, 10.2217/fmb-2016-0005
  • 4. G. An, B. G. Fitzpatrick, S. Christley, P. Federico, A. Kanarek, R. Miller Neilan, M. Oremland, R. Salinas, R. Laubenbacher, S. Lenhart, Optimization and Control of Agent-Based Models in Biology: A Perspective, Bulletin of Mathematical Biology, 2017, 79, 1, 63, 10.1007/s11538-016-0225-6
  • 5. Gustavo A. Vásquez-Montoya, Juan S. Danobeitia, Luis A. Fernández, Juan P. Hernández-Ortiz, Computational immuno-biology for organ transplantation and regenerative medicine, Transplantation Reviews, 2016, 30, 4, 235, 10.1016/j.trre.2016.05.002
  • 6. Stanca M. Ciupe, Jane M. Heffernan, In-host modeling, Infectious Disease Modelling, 2017, 2, 2, 188, 10.1016/j.idm.2017.04.002
  • 7. Clara Prats, Cristina Vilaplana, Joaquim Valls, Elena Marzo, Pere-Joan Cardona, Daniel López, Local Inflammation, Dissemination and Coalescence of Lesions Are Key for the Progression toward Active Tuberculosis: The Bubble Model, Frontiers in Microbiology, 2016, 7, 10.3389/fmicb.2016.00033
  • 8. Jaishree Garhyan, Bikul Das, Rakesh Bhatnagar, , Mycobacterium Tuberculosis: Molecular Infection Biology, Pathogenesis, Diagnostics and New Interventions, 2019, Chapter 17, 301, 10.1007/978-981-32-9413-4_17
  • 9. Martí Català, Jordi Bechini, Montserrat Tenesa, Ricardo Pérez, Mariano Moya, Cristina Vilaplana, Joaquim Valls, Sergio Alonso, Daniel López, Pere-Joan Cardona, Clara Prats, Dominik Wodarz, Modelling the dynamics of tuberculosis lesions in a virtual lung: Role of the bronchial tree in endogenous reinfection, PLOS Computational Biology, 2020, 16, 5, e1007772, 10.1371/journal.pcbi.1007772
  • 10. Sarah B. Minucci, Rebecca L. Heise, Angela M. Reynolds, Review of Mathematical Modeling of the Inflammatory Response in Lung Infections and Injuries, Frontiers in Applied Mathematics and Statistics, 2020, 6, 10.3389/fams.2020.00036

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Chang Gong, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved