Mathematical Biosciences and Engineering, 2015, 12(3): 555-564. doi: 10.3934/mbe.2015.12.555.

Primary: 34K13, 92D30; Secondary: 37N25.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Threshold dynamics of a periodic SIR model with delay in an infected compartment

1. School of Mathematics and Statistics, Xidian University, Xi'an, Shaanxi 710071

Threshold dynamics of epidemic models in periodic environmentsattract more attention. But there are few papers which are concernedwith the case where the infected compartments satisfy a delaydifferential equation. For this reason, we investigate the dynamicalbehavior of a periodic SIR model with delay in an infectedcompartment. We first introduce the basic reproduction number$\mathcal {R}_0$ for the model, and then show that it can act as athreshold parameter that determines the uniform persistence orextinction of the disease. Numerical simulations are performed toconfirm the analytical results and illustrate the dependence of$\mathcal {R}_0$ on the seasonality and the latent period.
  Figure/Table
  Supplementary
  Article Metrics

Keywords periodicsolution.; Basic reproduction number; delay; threshold dynamics

Citation: Zhenguo Bai. Threshold dynamics of a periodic SIR model with delay in an infected compartment. Mathematical Biosciences and Engineering, 2015, 12(3): 555-564. doi: 10.3934/mbe.2015.12.555

References

  • 1. J. Math. Biol., 53 (2006), 421-436.
  • 2. 2014, preprint.
  • 3. J. Math. Biol., 62 (2011), 741-762.
  • 4. Math. Biosci., 210 (2007), 647-658.
  • 5. Nonlinear Anal., 74 (2011), 3548-3555.
  • 6. Rocky Mountain J. Math., 9 (1979), 31-42.
  • 7. Proc. R. Soc. B., 273 (2006), 2541-2550.
  • 8. Bull. Math. Biol., 72 (2010), 1192-1207.
  • 9. J. Math. Biol., 65 (2012), 623-652.
  • 10. SIAM J. Appl. Math., 70 (2010), 2023-2044.
  • 11. Nonlinear Anal. RWA, 11 (2010), 3106-3109.
  • 12. Nonlinear Anal. RWA, 11 (2010), 55-59.
  • 13. Appl. Math. Lett., 17 (2004), 1141-1145.
  • 14. SIAM J. Math. Anal., 37 (2005), 251-275.
  • 15. J. Math. Anal. Appl., 363 (2010), 230-237.
  • 16. J. Math. Biol., 64 (2012), 933-949.
  • 17. Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1155-1170.
  • 18. Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, RI, 1995.
  • 19. J. Integral Equations, 7 (1984), 253-277.
  • 20. J. Math. Biol., 30 (1992), 755-763.
  • 21. SIAM J. Appl. Math., 69 (2008), 621-639.
  • 22. J. Dyn. Diff. Equat., 20 (2008), 699-717.
  • 23. Nonlinear Anal. RWA, 10 (2009), 3175-3189.
  • 24. Math. Biosci., 208 (2007), 419-429.
  • 25. Springer-Verlag, New York, 2003.
  • 26. J. Math. Anal. Appl., 325 (2007), 496-516.

 

This article has been cited by

  • 1. Erivelton G. Nepomuceno, Alípio M. Barbosa, Marcos X. Silva, Matjaž Perc, Individual-based modelling and control of bovine brucellosis, Royal Society Open Science, 2018, 5, 5, 180200, 10.1098/rsos.180200
  • 2. Eric Ávila-Vales, Erika Rivero-Esquivel, Gerardo Emilio García-Almeida, Global Dynamics of a Periodic SEIRS Model with General Incidence Rate, International Journal of Differential Equations, 2017, 2017, 1, 10.1155/2017/5796958
  • 3. Erivelton G. Nepomuceno, Ricardo H.C. Takahashi, Luis A. Aguirre, Reducing vaccination level to eradicate a disease by means of a mixed control with isolation, Biomedical Signal Processing and Control, 2018, 40, 83, 10.1016/j.bspc.2017.09.004
  • 4. Zhenguo Bai, Threshold dynamics of a time-delayed SEIRS model with pulse vaccination, Mathematical Biosciences, 2015, 269, 178, 10.1016/j.mbs.2015.09.005
  • 5. Ousmane Koutou, Bakary Traoré, Boureima Sangaré, Yuriy Rogovchenko, Mathematical model of malaria transmission dynamics with distributed delay and a wide class of nonlinear incidence rates, Cogent Mathematics & Statistics, 2019, 5, 1, 1, 10.1080/25742558.2018.1564531
  • 6. Liu Xiangsen, Dai Binxiang, Dynamics of a generalized predator‐prey model with delay and impulse via the basic reproduction number, Mathematical Methods in the Applied Sciences, 2019, 10.1002/mma.5794

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Zhenguo Bai, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved