Optimality and stability of symmetric evolutionary games with applications in genetic selection

  • Received: 01 September 2014 Accepted: 29 June 2018 Published: 01 January 2015
  • MSC : Primary: 49K30, 65K10, 91A22, 92D15, 92D25.

  • Symmetric evolutionary games, i.e., evolutionary games with symmetric fitness matrices, have important applications in population genetics, where they can be used to model for example the selection and evolution of the genotypes of a given population. In this paper, we review the theory for obtaining optimal and stable strategies for symmetric evolutionary games, and provide some new proofs and computational methods. In particular, we review the relationship between the symmetric evolutionary game and the generalized knapsack problem, and discuss the first and second order necessary and sufficient conditions that can be derived from this relationship for testing the optimality and stability of the strategies. Some of the conditions are given in different forms from those in previous work and can be verified more efficiently. We also derive more efficient computational methods for the evaluation of the conditions than conventional approaches. We demonstrate how these conditions can be applied to justifying the strategies and their stabilities for a special class of genetic selection games including some in the study of genetic disorders.

    Citation: Yuanyuan Huang, Yiping Hao, Min Wang, Wen Zhou, Zhijun Wu. Optimality and stability of symmetric evolutionary games with applications in genetic selection[J]. Mathematical Biosciences and Engineering, 2015, 12(3): 503-523. doi: 10.3934/mbe.2015.12.503

    Related Papers:

  • Symmetric evolutionary games, i.e., evolutionary games with symmetric fitness matrices, have important applications in population genetics, where they can be used to model for example the selection and evolution of the genotypes of a given population. In this paper, we review the theory for obtaining optimal and stable strategies for symmetric evolutionary games, and provide some new proofs and computational methods. In particular, we review the relationship between the symmetric evolutionary game and the generalized knapsack problem, and discuss the first and second order necessary and sufficient conditions that can be derived from this relationship for testing the optimality and stability of the strategies. Some of the conditions are given in different forms from those in previous work and can be verified more efficiently. We also derive more efficient computational methods for the evaluation of the conditions than conventional approaches. We demonstrate how these conditions can be applied to justifying the strategies and their stabilities for a special class of genetic selection games including some in the study of genetic disorders.


    加载中
    [1] Academic Press, 1979.
    [2] SIAM Review, 44 (2002), 394-414.
    [3] Numer. Funct. Anal. Optim., 5 (1982), 127-140.
    [4] Cambridge University Press, 2004.
    [5] $8^{th}$ edition, Pearson Education Inc., 2008.
    [6] Springer-Verlag, New York, 2004.
    [7] Clarendon Press, Oxford, 1999.
    [8] Zeitschrift für Induktive Abstammungs- und Vererbungslehre, 1 (1908), p395.
    [9] Cambridge University Press, 1998.
    [10] Nature, 246 (1973), 15-18.
    [11] Canadian J. Math., 17 (1965), 533-540.
    [12] Math. Programming, 39 (1987), 117-129.
    [13] Proceedings of the National Academy of Sciences, 36 (1950), 48-49.
    [14] Springer-Verlag, New York, 2006.
    [15] Linear Algebra and Its Applications, 152 (1991), 69-91.
    [16] The MIT Press, 2010.
    [17] John Wiley & Sons Inc., 2006.
    [18] SIAM, 1997.
    [19] The MIT Press, 1995.
    [20] Jahreshefte des Vereins fur vaterlandische Naturkunde in Wurttemberg, 64 (1908), 368-382.
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1992) PDF downloads(502) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog