Mathematical Biosciences and Engineering, 2015, 12(3): 473-490. doi: 10.3934/mbe.2015.12.473.

Primary: 92D30; Secondary: 34K20, 37N25.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

The effect of time delay in plant--pathogen interactions with host demography

1. Department of Mathematics and Applications, University of Naples Federico II, via Cintia, I-80126 Naples
2. Department of Mathematics, University of Portsmouth, Portsmouth, PO1 3HF

Botanical epidemic models are very important tools to study invasion, persistence and control of diseases. It is well known that limitations arise from considering constant infection rates. We replace this hypothesis in the framework of delay differential equations by proposing a delayed epidemic model for plant--pathogen interactions with host demography. Sufficient conditions for the global stability of the pathogen-free equilibrium and the permanence of the system are among the results obtained through qualitative analysis. We also show that the delay can cause stability switches of the coexistence equilibrium. In the undelayed case, we prove that the onset of oscillations may occur through Hopf bifurcation.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Hopf bifurcation.; global stability; epidemic model; Time delay; permanence

Citation: Bruno Buonomo, Marianna Cerasuolo. The effect of time delay in plant--pathogen interactions with host demography. Mathematical Biosciences and Engineering, 2015, 12(3): 473-490. doi: 10.3934/mbe.2015.12.473

References

  • 1. Nature, 280 (1979), 361-367.
  • 2. Oxford University Press, Oxford and New York, 1991.
  • 3. Math. Biosci. Eng., 8 (2011), 931-952.
  • 4. SIAM J. Math. Anal., 33 (2002), 1144-1165.
  • 5. J. Math. Biol., 33 (1995), 250-260.
  • 6. John Wiley and Sons, Boston, 1982.
  • 7. Appl. Math. Comput., 232 (2014), 858-871.
  • 8. Springer, Berlin, 1993.
  • 9. Math. Biosci. Engin., 1 (2004), 361-404.
  • 10. J. Royal Soc. Interface, 7 (2010), 439-451.
  • 11. J. Theor. Biol., 278 (2011), 32-43.
  • 12. Phytopathology, 102 (2012), 365-380.
  • 13. J. Math. Biol., 36 (1998), 227-248.
  • 14. Adv. Bot. Res., 38 (2002), 1-64.
  • 15. Philos. T. Roy. Soc. B, 363 (2008), 741-759.
  • 16. Annu. Rev. Phytopathol., 46 (2008), 385-418.
  • 17. Theor. Pop. Biol., 57 (2000), 219-233.
  • 18. Springer-Verlag, Berlin, 1983.
  • 19. SIAM J. Math. Anal., 20 (1989), 388-395.
  • 20. J. Math. Biol., 63 (2011), 125-139.
  • 21. Plant Pathol., 35 (1986), 355-361.
  • 22. Physiol. Entomol., 29 (2004), 291-304.
  • 23. J. Theor. Biol., 256 (2009), 201-214.
  • 24. Phytopathology, 84 (1994), 24-27.
  • 25. Virus Res., 159 (2011), 215-222.
  • 26. Math. Med. Biol., 15 (1998), 1-18.
  • 27. Math. Biosci. Eng., 3 (2006), 101-109.
  • 28. Academic Press, 1993.
  • 29. Math. Biosci., 160 (1999), 191-213.
  • 30. J. Math. Anal. Appl., 182 (1994), 250-256.
  • 31. Appl. Math. Lett., 17 (2004), 1141-1145.
  • 32. Tohoku Math. J., 54 (2002), 581-591.
  • 33. Eur. J. Plant Path., 115 (2006), 3-23.
  • 34. American Phytopathological Society, St Paul, MN, 2007.
  • 35. Nature, 280 (1979), 455-461.
  • 36. Nonlinear Anal. RWA, 11 (2010), 55-59.
  • 37. Plant Disease, 85 (2001), 1122-1122.
  • 38. SIAM J. Appl. Math., 62 (2001), 58-69.
  • 39. John Wiley & Sons, 2006.
  • 40. Nonlinear Anal., 42 (2000), 931-947.
  • 41. Dynamical Systems, 27 (2012), 145-160.
  • 42. Math. Methods Appl. Sci., 30 (2007), 733-749.
  • 43. J. Appl. Ecol., 43 (2006), 506-516.
  • 44. Proc. Royal Soc. Lond. B Biol., 274 (2007), 11-18.
  • 45. Phytopathology, 98 (2008), 239-249
  • 46. Math. Biosci., 180 (2002), 29-48.
  • 47. Academic Press, 1963.
  • 48. J. Appl. Math. Comput., 35 (2011), 229-250.
  • 49. Nonlinear Dynam., 61 (2010), 229-239.
  • 50. Phytopathology, 61 (1971), 600-610.
  • 51. Nonlinear Anal. RWA, 9 (2008), 1714-1726.
  • 52. Discrete Dyn. Nat. Soc., 2008 (2008), 16pp.

 

This article has been cited by

  • 1. Cristiana Silva, Helmut Maurer, Delfim Torres, Optimal control of a tuberculosis model with state and control delays, Mathematical Biosciences and Engineering, 2016, 14, 1, 321, 10.3934/mbe.2017021
  • 2. Fahad Al Basir, Ezio Venturino, Santanu Ray, Priti Kumar Roy, Impact of farming awareness and delay on the dynamics of mosaic disease in Jatropha curcas plantations, Computational and Applied Mathematics, 2018, 10.1007/s40314-018-0675-6
  • 3. Nabyendu Rakshit, Fahad Al Basir, Arnab Banerjee, Santanu Ray, Dynamics of plant mosaic disease propagation and the usefulness of roguing as an alternative biological control, Ecological Complexity, 2019, 38, 15, 10.1016/j.ecocom.2019.01.001
  • 4. Abhishek Kumar, Dynamic Behavior of an SIR Epidemic Model along with Time Delay; Crowley–Martin Type Incidence Rate and Holling Type II Treatment Rate, International Journal of Nonlinear Sciences and Numerical Simulation, 2019, 0, 0, 10.1515/ijnsns-2018-0208

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Bruno Buonomo, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved