Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Virus dynamics model with intracellular delays and immune response

1. Department of Mathematics, Harbin Institute of Technology, Harbin, 150001
2. Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, 3041#, 2 Yi-Kuang Street, Harbin, 150080

In this paper, we incorporate an extra logistic growth term for uninfected CD4$^+$ T-cells into an HIV-1 infection model with bothintracellular delay and immune response delay which was studied by Pawelek et al. in [26]. First, we proved that if the basicreproduction number $R_0<1 then="" the="" infection-free="" steady="" state="" is="" globally="" asymptotically="" stable="" second="" when="" r_0="">1$, then the system is uniformly persistent, suggesting that the clearance or the uniform persistence of the virus is completely determined by $R_0 $. Furthermore, given both the two delays are zero, then the infected steady state is asymptotically stable when the intrinsic growth rate of the extra logistic term is sufficiently small. When the two delays are not zero, we showed that both the immune response delay and the intracellular delay may destabilize the infected steady state by leading to Hopf bifurcation and stable periodic oscillations, on which we analyzed the direction of the Hopf bifurcationas well as the stability of the bifurcating periodic orbits by normal form and center manifold theory introduced by Hassard et al[15]. Third, we engaged numerical simulations to explore the rich dynamics like chaotic oscillations, complicated bifurcationdiagram of viral load due to the logistic term of target cells and the two time delays.
  Figure/Table
  Supplementary
  Article Metrics

Keywords uniform persistence.; logistic growth; HIV-1 model; intracellular delay; Hopf bifurcation

Citation: Haitao Song, Weihua Jiang, Shengqiang Liu. Virus dynamics model with intracellular delays and immune response. Mathematical Biosciences and Engineering, 2015, 12(1): 185-208. doi: 10.3934/mbe.2015.12.185

References

  • 1. Proc. R. Soc. Lond. B, 267 (2000), 1347-1354.
  • 2. J. Math. Biol., 50 (2005), 607-625.
  • 3. J. Virol., 71 (1997), 3275-3278.
  • 4. Chaos, Solitons and Fractals, 42 (2009), 1-11.
  • 5. Bull. Math. Biol., 64 (2002), 29-64.
  • 6. Math. Biosci., 200 (2006), 1-27.
  • 7. Funkcialaj Ekvacioj, 29 (1986), 77-90.
  • 8. Math. Biosci., 165 (2000), 27-39.
  • 9. N. Engl. J. Med., 324 (1991), 961-964.
  • 10. J. Theor. Biol., 175 (1995), 567-576.
  • 11. J. Theor. Biol., 190 (1998), 201-214.
  • 12. J. Theor. Biol., 226 (2004), 95-109.
  • 13. Funkcialaj Ekvacioj, 34 (1991), 187-209.
  • 14. Springer-Verlag, New York, 1993.
  • 15. Cambrige University Press, Cambrige, 1981.
  • 16. J. Theor. Biol., 243 (2006), 191-204.
  • 17. Proc. Natl. Acad. Sci. USA, 93 (1996), 7247-7251.
  • 18. in Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, PA, 1976.
  • 19. Nonlinear Analysis: Real World Applications, 13 (2012), 1080-1092.
  • 20. SIAM J. Appl. Math., 70 (2010), 2434-2448.
  • 21. Math. Biosci. Eng., 7 (2010), 675-685.
  • 22. Math. Biosci., 163 (2000), 201-215.
  • 23. Math. Biosci., 179 (2002), 73-94.
  • 24. Science, 272 (1996), 74-79.
  • 25. Oxford University, Oxford, 2000.
  • 26. Math. Biosci., 235 (2012), 98-109.
  • 27. Nat. Rev. Immunol., 2 (2002), 28-36.
  • 28. Nature, 387 (1997), 188-191.
  • 29. Math. Biosci., 114 (1993), 81-125.
  • 30. SIAM Rev., 41 (1999), 3-44.
  • 31. Science, 271 (1996), 1582-1586.
  • 32. Science, 271 (1996), 497-499.
  • 33. Lancet, 354 (1999), 1782-1785.
  • 34. Bull. Math. Biol., 69 (2007), 2027-2060.
  • 35. American Mathematical Society, Providence, RI, 1995.
  • 36. Nonlinear Anal., 47 (2001), 6169-6179.
  • 37. J. Theor. Biol., 203 (2000), 285-301.
  • 38. Mathematical Medicine and Biology, 29 (2012), 283-300.
  • 39. Math. Biosci., 200 (2006), 44-57.
  • 40. Comput. Math. Appl., 51 (2006), 1593-1610.
  • 41. Math, Biosci., 219 (2009), 104-112.
  • 42. Trends. Immunol., 23 (2002), 194-200.
  • 43. Philosophical Transactions of the Royal Society B: Biological Sciences, 355 (2000), 329-343.
  • 44. Lancet, 346 (1995), 61-62.
  • 45. Discrete Contin. Dyn. Syst. B, 12 (2009), 511-524.
  • 46. Math. Med. Biol., 25 (2008), 99-112.

 

This article has been cited by

  • 1. Jinhu Xu, Yicang Zhou, Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay, Mathematical Biosciences and Engineering, 2015, 13, 2, 10.3934/mbe.2015006
  • 2. Suxia Zhang, Hongsen Dong, Jinhu Xu, Bifurcation Analysis of a Delayed Infection Model with General Incidence Function, Computational and Mathematical Methods in Medicine, 2019, 2019, 1, 10.1155/2019/1989651

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Haitao Song, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved