Mathematical Biosciences and Engineering, 2015, 12(6): 1173-1187. doi: 10.3934/mbe.2015.12.1173.

Primary: 65M06; Secondary: 92B05.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Mathematical model and its fast numerical method for the tumor growth

1. Institute of Mathematical Sciences, Ewha Womans University, Seoul 120-750
2. Department of Mathematics, Konkuk University, Seoul 143-701
3. Department of Mathematics, Korea University, Seoul 136-713

In this paper, we reformulate the diffuse interface model of the tumor growth (S.M. Wise et al.,Three-dimensional multispecies nonlinear tumor growth-I: model and numerical method, J. Theor.Biol. 253 (2008) 524--543). In the new proposed model, we use the conservative second-orderAllen--Cahn equation with a space--time dependent Lagrange multiplier instead of using thefourth-order Cahn--Hilliard equation in the original model. To numerically solve the new model, weapply a recently developed hybrid numerical method. We perform various numerical experiments. Thecomputational results demonstrate that the new model is not only fast but also has a good featuresuch as distributing excess mass from the inside of tumor to its boundary regions.
  Figure/Table
  Supplementary
  Article Metrics

Keywords conservative Allen--Cahn equation; Tumor growth; operator splitting method; multigridmethod.

Citation: Hyun Geun Lee, Yangjin Kim, Junseok Kim. Mathematical model and its fast numerical method for the tumor growth. Mathematical Biosciences and Engineering, 2015, 12(6): 1173-1187. doi: 10.3934/mbe.2015.12.1173

References

  • 1. Arch. Rational Mech. Anal., 128 (1994), 165-205.
  • 2. J. Theor. Biol., 225 (2003), 257-274.
  • 3. $5^{th}$ edition, Garland Science, New York, 2007.
  • 4. Acta Mater., 27 (1979), 1085-1095.
  • 5. Bull. Math. Biol., 60 (1998), 857-899.
  • 6. Nat. Rev. Cancer, 8 (2008), 227-234.
  • 7. J. Theor. Biol., 233 (2005), 469-481.
  • 8. Comment. Math. Helv., 72 (1997), 52-66.
  • 9. J. Theor. Biol., 241 (2006), 903-918.
  • 10. Math. Models Methods Appl. Sci., 18 (2008), 593-646.
  • 11. Math. Meth. Appl. Sci., 34 (2011), 1157-1180.
  • 12. SIAM, Philadelphia, 1987.
  • 13. SIAM J. Math. Anal., 28 (1997), 769-807.
  • 14. J. Math. Biol., 39 (1999), 59-89.
  • 15. Phil. Trans. R. Soc. A, 364 (2006), 1563-1578.
  • 16. Math. Biosci., 130 (1995), 151-181.
  • 17. Math. Biosci., 135 (1996), 187-216.
  • 18. Math. Comput. Model., 24 (1996), 1-17.
  • 19. Math. Med. Biol., 19 (2002), 1-29.
  • 20. Eur. J. Appl. Math., 7 (1996), 287-301.
  • 21. J. Chem. Phys., 28 (1958), 258-267.
  • 22. Arch. Rational Mech. Anal., 178 (2005), 1-55.
  • 23. Arch. Rational Mech. Anal., 123 (1993), 117-151.
  • 24. Int. J. Numer. Meth. Biomed. Engng., 30 (2014), 726-754.
  • 25. in Selected Topics in Cancer Modeling: Genesis, Evolution, Immune Competition, and Therapy (eds. N. Bellomo, M. Chaplain and E. de Angelis), Birkhäuser, (2008), 113-181.
  • 26. Cambridge University Press, Cambridge, 2010.
  • 27. J. Math. Biol., 46 (2003), 191-224.
  • 28. SIAM J. Appl. Math., 72 (2012), 1818-1841.
  • 29. Nat. Clin. Pract. Oncol., 6 (2009), 34-42.
  • 30. In Silico Biol., 2 (2002), 393-406.
  • 31. J. Stat. Phys., 128 (2007), 287-345.
  • 32. SIAM J. Math. Anal., 29 (1998), 1419-1433.
  • 33. Adv. Differ. Equ., 2 (1997), 619-642.
  • 34. in Complex Systems in Biomedicine (eds. A. Quarteroni, L. Formaggia and A. Veneziani), Springer, (2006), 71-108.
  • 35. J. Theor. Biol., 264 (2010), 1254-1278.
  • 36. Math. Models Methods Appl. Sci., 17 (2007), 1751-1772.
  • 37. Phys. Rev. E, 75 (2007), 051911.
  • 38. in Modeling of Biological Materials (eds. F. Mollica, L. Preziosi and K.R. Rajagopal), Birkhäuser, (2007), 263-321.
  • 39. J. Theor. Biol., 56 (1976), 229-242.
  • 40. J. Neuropath. Exp. Neur., 66 (2007), 1-9.
  • 41. Math. Models Methods Appl. Sci., 15 (2005), 1779-1794.
  • 42. J. Reine Angew. Math., 382 (1987), 35-48.
  • 43. Biophys. J., 89 (2005), 3884-3894.
  • 44. J. Theor. Biol., 203 (2000), 367-382.
  • 45. Int. J. Eng. Sci., 84 (2014), 11-17.
  • 46. Phys. Rev. Lett., 96 (2006), 058104.
  • 47. World J. Gastroentero., 13 (2007), 1399-1407.
  • 48. Discrete Cont. Dyn-B, 7 (2007), 581-604.
  • 49. Nonlinearity, 23 (2010), R1-R91.
  • 50. J. Theor. Biol., 219 (2002), 343-370.
  • 51. Differ. Integral Equ., 13 (2000), 1189-1199.
  • 52. Math. Biosci. Eng., 2 (2005), 381-418.
  • 53. Proc. R. Soc. Lond. A, 422 (1989), 261-278.
  • 54. Clin. Chim. Acta, 357 (2005), 173-179.
  • 55. in Cellular Automata (eds. P.M.A. Sloot, B. Chopard and A.G. Hoekstra), Springer, 3305 (2004), 444-453.
  • 56. SIAM Rev., 49 (2007), 179-208.
  • 57. IMA J. Appl. Math., 48 (1992), 249-264.
  • 58. J. Sci. Comput., 19 (2003), 373-384.
  • 59. Neurolmage, 37 (2007), S120-S134.
  • 60. Cambridge University Press, Cambridge, 1996.
  • 61. Academic Press, London, 2001.
  • 62. J. Theor. Biol., 216 (2002), 85-100.
  • 63. Math. Comput. Model., 53 (2011), 1-20.
  • 64. J. Theor. Biol., 253 (2008), 524-543.
  • 65. Bull. Math. Biol., 67 (2005), 211-259.

 

This article has been cited by

  • 1. J.E. Macías-Díaz, Conciliating efficiency and dynamical consistency in the simulation of the effects of proliferation and motility of transforming growth factor β on cancer cells, Communications in Nonlinear Science and Numerical Simulation, 2016, 40, 173, 10.1016/j.cnsns.2016.03.018
  • 2. Sakine Esmaili, M. R. Eslahchi, Application of collocation method for solving a parabolic-hyperbolic free boundary problem which models the growth of tumor with drug application, Mathematical Methods in the Applied Sciences, 2017, 40, 5, 1711, 10.1002/mma.4092
  • 3. Jorge E. Macías-Díaz, Armando Gallegos, A structure-preserving computational method in the simulation of the dynamics of cancer growth with radiotherapy, Journal of Mathematical Chemistry, 2017, 10.1007/s10910-017-0818-9
  • 4. Vahid Mohammadi, Mehdi Dehghan, Simulation of the phase field Cahn-Hilliard and tumor growth models via a numerical scheme: Element-free Galerkin method, Computer Methods in Applied Mechanics and Engineering, 2018, 10.1016/j.cma.2018.11.019
  • 5. Yangjin Kim, Junho Lee, Donggu Lee, Hans Othmer, Synergistic Effects of Bortezomib-OV Therapy and Anti-Invasive Strategies in Glioblastoma: A Mathematical Model, Cancers, 2019, 11, 2, 215, 10.3390/cancers11020215
  • 6. Ahmed M. Makhlouf, Lamiaa El-Shennawy, Hesham A. Elkaranshawy, Mathematical Modelling for the Role of CD4+T Cells in Tumor-Immune Interactions, Computational and Mathematical Methods in Medicine, 2020, 2020, 1, 10.1155/2020/7187602

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Hyun Geun Lee, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved