Mathematical Biosciences and Engineering, 2015, 12(6): 1141-1156. doi: 10.3934/mbe.2015.12.1141.

Primary: 92C45, 92C50; Secondary: 92B05.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Hybrid models of cell and tissue dynamics in tumor growth

1. Department of Mathematics, Konkuk University, Seoul
2. School of Mathematics, University of Minnesota, Minneapolis, MN 55445

Hybrid models of tumor growth, in which some regions are described at the celllevel and others at the continuum level, provide a flexible description thatallows alterations of cell-level properties and detailed descriptions of theinteraction with the tumor environment, yet retain the computational advantagesof continuum models where appropriate. We review aspects of the general approachand discuss applications to breast cancer and glioblastoma.
  Figure/Table
  Supplementary
  Article Metrics

Keywords microenvironment.; Tumor growth; cancer

Citation: Yangjin Kim, Hans G. Othmer. Hybrid models of cell and tissue dynamics in tumor growth. Mathematical Biosciences and Engineering, 2015, 12(6): 1141-1156. doi: 10.3934/mbe.2015.12.1141

References

  • 1. Current opinion in cell biology, 19 (2007), 223-229.
  • 2. Curr Opin Cell Biol, 23 (2011), 621-629.
  • 3. Clin Cancer Res, 9 (2003), 1590-1595.
  • 4. J. Theor. Biol., 231 (2004), 203-222.
  • 5. Current opinion in cell biology, 23 (2011), 744-755.
  • 6. Ann. Rev. Biomed. Eng., 13 (2011), 117-155.
  • 7. Cell, 147 (2011), 992-1009.
  • 8. Nature Reviews Molecular Cell Biology, 10 (2009), 445-457.
  • 9. Biophysical J., 88 (2005), 62-75.
  • 10. Cell Cycle, 9 (2010), 2742-2748.
  • 11. Molecular Cell, 37 (2010), 620-632.
  • 12. Bull. Math. Biol., 66 (2004), 167-193.
  • 13. Cancer Research, 66 (2006), 1033-1039.
  • 14. The Journal of pathology, 226 (2012), 185-199.
  • 15. Nature Biotechnology, 15 (1997), 778-783.
  • 16. Phys Biol., 8 (2011), 015010.
  • 17. ASN NEURO, 3 (2011), e00063.
  • 18. Cancer Res, 74 (2014), 4622-4637.
  • 19. Cancer research, 66 (2006), p8927.
  • 20. Frontiers in Molecular and Cellular Oncology, 3 (2013), p53.
  • 21. Discrete and Continuous Dynamical Systems-B, 18 (2013), 969-1015.
  • 22. Math. Models Methods in Appl Sci, 17 (2007), 1773-1798.
  • 23. J. Theo. Biol., 260 (2009), 359-371.
  • 24. PLoS One, 6 (2011), e28293.
  • 25. Progress in Biophysics and Molecular Biology, 106 (2011b), 353-379.
  • 26. PLoS One, 9 (2014), e102499.
  • 27. Bull. Math. Biol., 75 (2013), 1304-1350.
  • 28. Nonlinearity, 23 (2010), R1-R91.
  • 29. J. Math. Biol., 58 (2009), 765-798.
  • 30. Annual Review of Biochemistry, 67 ( 1998), p753.
  • 31. Cell, 134 (2008), 215-230.
  • 32. Nature Reviews Cancer, 6 (2006), 924-935.
  • 33. J Theor Biol, 254 (2008), 1-13.
  • 34. Proceedings of the National Academy of Science, 97 (2000), 11448-11453.
  • 35. The Journal of Neuroscience, 33 (2013), 15603-15617.
  • 36. In Vitro Cell Dev Biol Anim, 42 (2006), 242-247.
  • 37. Biophys J, 92 (2007), 356-365.
  • 38. Philosophical Transactions of the Royal Society A, 367 (2009), 3525-3553.
  • 39. Semin Cancer Biol, 11 (2001), 97-104.
  • 40. Cell cycle, 10 (2011), 3263-3268.
  • 41. Science, 123 (1956), 309-314.

 

This article has been cited by

  • 1. Christian Engwer, Christian Stinner, Christina Surulescu, On a structured multiscale model for acid-mediated tumor invasion: The effects of adhesion and proliferation, Mathematical Models and Methods in Applied Sciences, 2017, 27, 07, 1355, 10.1142/S0218202517400188
  • 2. Raluca Eftimie, Joseph J. Gillard, Doreen A. Cantrell, Mathematical Models for Immunology: Current State of the Art and Future Research Directions, Bulletin of Mathematical Biology, 2016, 78, 10, 2091, 10.1007/s11538-016-0214-9
  • 3. Stefaan W. Verbruggen, Laoise M. McNamara, , Mechanobiology in Health and Disease, 2018, 157, 10.1016/B978-0-12-812952-4.00006-4
  • 4. Yangjin Kim, Hyunji Kang, Gibin Powathil, Hyeongi Kim, Dumitru Trucu, Wanho Lee, Sean Lawler, Mark Chaplain, Dominik Wodarz, Role of extracellular matrix and microenvironment in regulation of tumor growth and LAR-mediated invasion in glioblastoma, PLOS ONE, 2018, 13, 10, e0204865, 10.1371/journal.pone.0204865
  • 5. Yangjin Kim, Donggu Lee, Junho Lee, Seongwon Lee, Sean Lawler, Eugene Demidenko, Role of tumor-associated neutrophils in regulation of tumor growth in lung cancer development: A mathematical model, PLOS ONE, 2019, 14, 1, e0211041, 10.1371/journal.pone.0211041
  • 6. Yangjin Kim, Junho Lee, Donggu Lee, Hans Othmer, Synergistic Effects of Bortezomib-OV Therapy and Anti-Invasive Strategies in Glioblastoma: A Mathematical Model, Cancers, 2019, 11, 2, 215, 10.3390/cancers11020215
  • 7. Markos Antonopoulos, Dimitra Dionysiou, Georgios Stamatakos, Nikolaos Uzunoglu, Three-dimensional tumor growth in time-varying chemical fields: a modeling framework and theoretical study, BMC Bioinformatics, 2019, 20, 1, 10.1186/s12859-019-2997-9
  • 8. Thomas Hillen, Kevin J. Painter, Magdalena A. Stolarska, Chuan Xue, Multiscale phenomena and patterns in biological systems: special issue in honour of Hans Othmer, Journal of Mathematical Biology, 2020, 10.1007/s00285-020-01473-2
  • 9. Min-Jhe Lu, Chun Liu, John Lowengrub, Shuwang Li, Complex Far-Field Geometries Determine the Stability of Solid Tumor Growth with Chemotaxis, Bulletin of Mathematical Biology, 2020, 82, 3, 10.1007/s11538-020-00716-z

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Yangjin Kim, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved