Mathematical Biosciences and Engineering, 2015, 12(5): 1055-1063. doi: 10.3934/mbe.2015.12.1055.

Primary: 92B05; Secondary: 62P10.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Ebola outbreak in West Africa: real-time estimation and multiple-wave prediction

1. Department of Mathematics, Southeast Missouri State University, Cape Girardeau, MO 63701

Based on the reported data until 18 March 2015 and numerical fitting via a simple formula of cumulative case number, we provide real-time estimation on basic reproduction number, inflection point, peak time and final outbreak size of ongoing Ebola outbreak in West Africa. From our simulation, we conclude that the first wave has passed its inflection point and predict that a second epidemic wave may appear in the near future.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Ebola outbreak in West Africa; peak time.; basic reproduction number; inflection point; final outbreak size

Citation: Xiang-Sheng Wang, Luoyi Zhong. Ebola outbreak in West Africa: real-time estimation and multiple-wave prediction. Mathematical Biosciences and Engineering, 2015, 12(5): 1055-1063. doi: 10.3934/mbe.2015.12.1055

References

 

This article has been cited by

  • 1. Doracelly Hincapié-Palacio, Juan Ospina, Delfim F. M. Torres, Approximated analytical solution to an Ebola optimal control problem, International Journal for Computational Methods in Engineering Science and Mechanics, 2016, 17, 5-6, 382, 10.1080/15502287.2016.1231236
  • 2. Jean-Paul Chretien, Steven Riley, Dylan B George, Mathematical modeling of the West Africa Ebola epidemic, eLife, 2015, 4, 10.7554/eLife.09186
  • 3. Jianquan Li, Yijun Lou, Characteristics of an epidemic outbreak with a large initial infection size, Journal of Biological Dynamics, 2016, 10, 1, 366, 10.1080/17513758.2016.1205223
  • 4. Yali Yang, Yiqun Li, Jianquan Li, Epidemic characteristics of two classic models and the dependence on the initial conditions, Mathematical Biosciences and Engineering, 2016, 13, 5, 999, 10.3934/mbe.2016027
  • 5. T. Berge, J.M.-S. Lubuma, G.M. Moremedi, N. Morris, R. Kondera-Shava, A simple mathematical model for Ebola in Africa, Journal of Biological Dynamics, 2017, 11, 1, 42, 10.1080/17513758.2016.1229817
  • 6. Fengqin Zhang, Jianquan Li, Jia Li, Epidemic characteristics of two classic SIS models with disease-induced death, Journal of Theoretical Biology, 2017, 424, 73, 10.1016/j.jtbi.2017.04.029
  • 7. T. Berge, A. J. Ouemba Tassé, H. M. Tenkam, J. Lubuma, Mathematical modeling of contact tracing as a control strategy of Ebola virus disease, International Journal of Biomathematics, 2018, 1850093, 10.1142/S1793524518500936
  • 8. Zineb EL Rhoubari, Hajar Besbassi, Khalid Hattaf, Noura Yousfi, Mathematical Modeling of Ebola Virus Disease in Bat Population, Discrete Dynamics in Nature and Society, 2018, 2018, 1, 10.1155/2018/5104524
  • 9. Dongmei Luo, Rongjiong Zheng, Duolao Wang, Xueliang Zhang, Yi Yin, Kai Wang, Weiming Wang, Effect of sexual transmission on the West Africa Ebola outbreak in 2014: a mathematical modelling study, Scientific Reports, 2019, 9, 1, 10.1038/s41598-018-38397-3
  • 10. Khan Muhammad Altaf, Abdon Atangana, Dynamics of Ebola Disease in the Framework of Different Fractional Derivatives, Entropy, 2019, 21, 3, 303, 10.3390/e21030303

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Xiang-Sheng Wang, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved