Mathematical Biosciences and Engineering, 2015, 12(5): 1017-1035. doi: 10.3934/mbe.2015.12.1017.

Primary: 37N25 Dynamical systems in biology, 93E10 Estimation and detection, 93E11 Filtering; Secondary: 57R50 Diffeomorphisms.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Change detection in the dynamics of an intracellular protein synthesis model using nonlinear Kalman filtering

1. Unit of Industrial Automation, Industrial Systems Institute, 26504, Rion Patras
2. Dept. of Paediatric Haematology-Oncology, Athens Children Hospital Aghia Sofia, 11527, Athens
3. Department of Physics, University of Ngaoundere, P.O. Box 454 Ngaoundere

   

A method for early diagnosis of parametric changes in intracellular protein synthesis models (e.g. the p53 protein - mdm2 inhibitor model) is developed with the use of a nonlinear Kalman Filtering approach (Derivative-free nonlinear Kalman Filter) and of statistical change detection methods. The intracellular protein synthesis dynamic model is described by a set of coupled nonlinear differential equations. It is shown that such a dynamical system satisfies differential flatness properties and this allows to transform it, through a change of variables (diffeomorphism), to the so-called linear canonical form. For the linearized equivalent of the dynamical system, state estimation can be performed using the Kalman Filter recursion. Moreover, by applying an inverse transformation based on the previous diffeomorphism it becomes also possible to obtain estimates of the state variables of the initial nonlinear model. By comparing the output of the Kalman Filter (which is assumed to correspond to the undistorted dynamical model) with measurements obtained from the monitored protein synthesis system, a sequence of differences (residuals) is obtained. The statistical processing of the residuals with the use of $\chi^2$ change detection tests, can provide indication within specific confidence intervals about parametric changes in the considered biological system and consequently indications about the appearance of specific diseases (e.g. malignancies)
  Figure/Table
  Supplementary
  Article Metrics

Keywords statistical change detection; Intracellular protein synthesis dynamical system; differential flatness theory; p53 protein - mdm2 inhibitor model; early diagnosis.; nonlinear Kalman filtering

Citation: Gerasimos G. Rigatos, Efthymia G. Rigatou, Jean Daniel Djida. Change detection in the dynamics of an intracellular protein synthesis model using nonlinear Kalman filtering. Mathematical Biosciences and Engineering, 2015, 12(5): 1017-1035. doi: 10.3934/mbe.2015.12.1017

References

  • 1. INRIA Research Report No 7406, 2010.
  • 2. Prentice-Hall, 1993.
  • 3. International Journal of Control, Taylor and Francis, 84 (2011), 261-269.
  • 4. IEEE Transactions on Control Systems Technology, 8 (2000), 372-379.
  • 5. IEEE Transactions on Control Systems Technology, 18 (2008), 953-961.
  • 6. SICE Annual Conference, Taipei, Taiwan, 2010.
  • 7. Biochimica and Biophysica Acta - Proteins and proteomics, 2013.
  • 8. Dynamical Systems, Control, Coding and Computer Vision, Birkhaüser, 258 (1999), 41-68.
  • 9. Proceedings of the National Academy of Sciences, doi.10.1073, 2010.
  • 10. Springer-Verlag, New York, 1993.
  • 11. Cancer Research, 73 (2013), 2639-2649.
  • 12. European Journal of Control, 19 (2013), 369-378.
  • 13. Frontiers of Oncology, 2013.
  • 14. Proc. 45th IEEE Conference on Decision and Control, San Diego, California, USA, 2006.
  • 15. Biosystems, Elsevier, 110 (2012), 74-83.
  • 16. Ecole Nationale Supérieure des Techniques Avancées, Paris, 2007.
  • 17. Applicable Algebra in Engineering, Communications and Computing, Springer, 22 (2011), 47-90.
  • 18. Journal on Bioinformatics and Systems Biology, Article ID 253894, 2008.
  • 19. 49th IEEE Conference on Decision and Control Atlanta, Georgia, USA, 2010.
  • 20. PLoS Computational Biology, 2010.
  • 21. Physica D, Elsevier, 240 (2011), 259-264.
  • 22. Journées X-UPS,École des Mines de Paris, Centre Automatique et Systèmes, 1999.
  • 23. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10 (2013), 537-543.
  • 24. Cell Health and cytoskeleton, Dove Medical Press, 2 (2010), 49-58.
  • 25. Proc. 27th Chinese Control Conference, Kunming Yunnan, China, 2008.
  • 26. Biosystems, Elsevier, 90 (2007), 698-706.
  • 27. Bioinformatics, 23 (2007), 3209-3216.
  • 28. Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis, 13 (2007), 251-266.
  • 29. Springer, 2011.
  • 30. IEEE Transactions on Industrial Electronics, 59 (2012), 3987-3997.
  • 31. Annual Conference of the Italian Institute for Calculus Applications, Gran Canaria, Spain, 2012.
  • 32. Fuzzy Sets and Systems, Elsevier, 60 (2009), 882-904.
  • 33. Springer, 2013.
  • 34. 11th International Conference of Numerical Analysis and Applied Mathematics, Rhodes, Greece, 2013.
  • 35. Bioinformatics 2014, Angers, France, 2014.
  • 36. Journal of Biology Systems, World Scientific, 2014.
  • 37. ZAMM - Journal of Applied Mathematics and Mechanics, 85 (2005), 411-421.
  • 38. Shaker Verlag, Aachen, 2003.
  • 39. Mathematical Biosciences and Engineering, 12 (2015), 185-208.
  • 40. Marcel Dekker, New York, 2004.
  • 41. IEE Proceedings on Systems Biology, 152 (2005), 109-118.
  • 42. Journal of Diabetes Science and Technology, Sage Publications, 8 (2014), 331-345.
  • 43. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 6 (2009), 410-419.
  • 44. Chinese Physics, 2010.
  • 45. Proceedings of the 32nd Chinese Control Conference, Xi'an, China, (2010), 8235-8240.
  • 46. 2008 IEEE Intl. Conference on Systems, Man and Cybernetics, Singapore, 2008.
  • 47. SICE-ICASE International Joint Conference 2006, Bexco, Busan, Korea, 2006.
  • 48. 2013 Australian Control Conference, Perth Australia, 2013.
  • 49. IEEE Transactions on Automatic Control, 55 (2010), 1018-1024.

 

This article has been cited by

  • 1. Kamalanand Krishnamurthy, , Computational Tools and Techniques for Biomedical Signal Processing, 2017, chapter 4, 76, 10.4018/978-1-5225-0660-7.ch004
  • 2. Kamalanand Krishnamurthy, , Biomedical Engineering, 2018, chapter 30, 690, 10.4018/978-1-5225-3158-6.ch030
  • 3. David Jaurès Fotsa-Mbogne, Estimation of anthracnose dynamics by nonlinear filtering, International Journal of Biomathematics, 2018, 11, 01, 1850005, 10.1142/S1793524518500055

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Gerasimos G. Rigatos, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved