Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A continuous phenotype space model of RNA virus evolution within a host

1. Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona
2. Department of Neuroscience, Columbia University, 40 Haven Avenue, New York, NY 10032

Due to their very high replication and mutation rates, RNA virusescan serve as an excellent testing model for verifying hypothesis andaddressing questions in evolutionary biology.In this paper, we suggest a simple deterministic mathematical modelof the within-host viral dynamics, where a possibility for random mutations incorporates.This model assumes a continuous distribution of viral strainsin a one-dimensional phenotype space where random mutations aremodelled by Brownian motion (that is, by diffusion).Numerical simulations show that randommutations combined with competition for a resource result in evolutiontowards higher Darwinian fitness: a stable pulse traveling waveof evolution, moving towards higher levels of fitness,is formed in the phenotype space.The advantage of this model, compared with the previously constructedmodels, is that this model is mechanistic and is based on commonlyaccepted model of virus dynamics within a host, and thus it allowsan incorporation of features of the real-life host-virus system such as immuneresponse, antiviral therapy, etc.
  Figure/Table
  Supplementary
  Article Metrics

Keywords HIV; Evolution; traveling wave.; random mutation; mathematical modelling

Citation: Andrei Korobeinikov, Conor Dempsey. A continuous phenotype space model of RNA virus evolution within a host. Mathematical Biosciences and Engineering, 2014, 11(4): 919-927. doi: 10.3934/mbe.2014.11.919

References

  • 1. Philos. Trans. R. Soc. Lond. Ser. B, 291 (1981), 451-524.
  • 2. J. Math. Biol., 46 (2003), 504-536.
  • 3. Z. Angew. Math. Mech., 76 (1996), 421-424.
  • 4. Proc. R. Soc. B, 273 (2006), 1307-1316.
  • 5. J. Theor. Biol., 233 (2005), 75-83.
  • 6. Proc. Natl Acad. Sci. USA, 99 (2002), 17209-17214.
  • 7. Phil. Trans. R. Soc. B, 352 (1997), 11-20.
  • 8. Journal of Biological Dynamics, 4 (2010), 282-295.
  • 9. J. Theor. Biol., 260 (2009), 490-501.
  • 10. J. Theor. Biol., 232 (2005), 17-26.
  • 11. Byul. Moskovskogo Gos. Univ., 1 (1937), 1-25. also in Selected Works of A.N. Kolmogorov: Mathematics and Mechanics, Kluwer, Dordrecht, (1991), 1-25.
  • 12. Math. Med. Biol., 26 (2009), 225-239.
  • 13. Math. Med. Biol., 26 (2009), 309-321.
  • 14. J. Theor. Biol., 222 (2003), 437-445.
  • 15. Journal of Virology, 69 (1995), 5087-5094.
  • 16. Science, 254 (1991), 963-969.
  • 17. Oxford University Press, 2000.
  • 18. Nature Reviews, 5 (2004), 52-61. http://tree.bio.ed.ac.uk/downloadPaper.php?id=242.
  • 19. Math. Biosci., 183 (2003), 135-160.
  • 20. J. Theor. Biol., 168 (1994), 291-308.
  • 21. J. Mol. Evol., 51 (2000), 245-255.
  • 22. Bull. Math. Biol., 73 (2011), 609-625.
  • 23. J. Theor. Biol., 203 (2000), 285-301.
  • 24. Phys. Rev. Lett. 76 (1996), 4440-4443.
  • 25. Math. Med. Biol., 30 (2013), 65-72.
  • 26. TRENDS in Immunology, 23 (2002), 194-200.
  • 27. Proc. R. Soc. Lond. B 265 (1998), 191-203.

 

This article has been cited by

  • 1. David Masip, Andrei Korobeinikiov, A continuous phenotype space model of cancer evolution, Journal of Physics: Conference Series, 2017, 811, 012005, 10.1088/1742-6596/811/1/012005
  • 2. Àngel Calsina, József Z. Farkas, On a strain-structured epidemic model, Nonlinear Analysis: Real World Applications, 2016, 31, 325, 10.1016/j.nonrwa.2016.01.014
  • 3. Silvia Pagliarini, Andrei Korobeinikov, Order reduction for a model of marine bacteriophage evolution, Journal of Physics: Conference Series, 2017, 811, 012010, 10.1088/1742-6596/811/1/012010
  • 4. Michael T. Meehan, Daniel G. Cocks, James M. Trauer, Emma S. McBryde, Coupled, multi-strain epidemic models of mutating pathogens, Mathematical Biosciences, 2018, 296, 82, 10.1016/j.mbs.2017.12.006
  • 5. A. A. Archibasov, A. Korobeinikov, V. A. Sobolev, Asymptotic expansions of solutions in a singularly perturbed model of virus evolution, Computational Mathematics and Mathematical Physics, 2015, 55, 2, 240, 10.1134/S0965542515020037
  • 6. Silvia Pagliarini, Andrei Korobeinikov, A mathematical model of marine bacteriophage evolution, Royal Society Open Science, 2018, 5, 3, 171661, 10.1098/rsos.171661
  • 7. Andrei Korobeinikov, Aleksei Archibasov, Vladimir Sobolev, Multi-scale problem in the model of RNA virus evolution, Journal of Physics: Conference Series, 2016, 727, 012007, 10.1088/1742-6596/727/1/012007
  • 8. Andrei Korobeinikov, Aleksei Archibasov, Vladimir Sobolev, Order reduction for an RNA virus evolution model, Mathematical Biosciences and Engineering, 2015, 12, 5, 1007, 10.3934/mbe.2015.12.1007
  • 9. A. A. Archibasov, A. Korobeinikov, V. A. Sobolev, Passage to the limit in a singularly perturbed partial integro-differential system, Differential Equations, 2016, 52, 9, 1115, 10.1134/S0012266116090020
  • 10. Andrei Korobeinikov, Immune response and within-host viral evolution: immune response can accelerate evolution, Journal of Theoretical Biology, 2018, 10.1016/j.jtbi.2018.08.003
  • 11. Andrei Korobeinikov, Silvia Pagliarini, , Extended Abstracts Summer 2016, 2018, Chapter 5, 23, 10.1007/978-3-030-01153-6_5
  • 12. Graeme Wake, , Extended Abstracts Spring 2014, 2015, Chapter 27, 155, 10.1007/978-3-319-22129-8_27
  • 13. Narani van Laarhoven, Andrei Korobeinikov, , Extended Abstracts Spring 2014, 2015, Chapter 21, 119, 10.1007/978-3-319-22129-8_21
  • 14. Anna Maria Riera-Escandell, Andrei Korobeinikov, , Extended Abstracts Spring 2018, 2019, Chapter 5, 27, 10.1007/978-3-030-25261-8_5

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Andrei Korobeinikov, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved