Mathematical Biosciences and Engineering, 2014, 11(4): 841-875. doi: 10.3934/mbe.2014.11.841.

Primary: 92D25, 92D15; Secondary: 34C60, 92B05.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Effects of nutrient enrichment on coevolution of a stoichiometric producer-grazer system

1. School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024

A simple producer-grazer model based on adaptive evolution and ecological stoichiometry is proposed and well explored to examine the patterns and consequences of adaptive changes for the evolutionary trait (i.e., body size), and also to investigate the effect of nutrient enrichment on the coevolutin of the producer and the grazer. The analytical and numerical results indicate that this simple model predicts a wide range of evolutionary dynamics and that the total nutrient concentration in the ecosystem plays a pivotal role in determining the outcome of producer-grazer coevolution. Nutrient enrichment may yield evolutionary branching, trait cycles or sensitive dependence on the initial values, depending on how much nutrient is present in the ecosystem. In the absence of grazing, the lower nutrient density facilitates the continuously stable strategy while the higher nutrient density induces evolutionary branching. When the grazer is present, with the increasing of nutrient level, the evolutionary dynamics is very complicated. The evolutionary dynamics sequentially undergo continuously stable strategy, evolutionary branching, evolutionary cycle, and sensitive dependence on the initial values. Nutrient enrichment asserts not only stabilizing but also destabilizing impact on the evolutionary dynamics. The evolutionary dynamics potentially show the paradox of nutrient enrichment. This study well documents the interplay and co-effect of the ecological and evolutionary processes.
  Figure/Table
  Supplementary
  Article Metrics

Keywords adaptive dynamics; nutrient enrichment; ecological stoichiometry.; Co-evolution

Citation: Lina Hao, Meng Fan, Xin Wang. Effects of nutrient enrichment on coevolution of a stoichiometric producer-grazer system. Mathematical Biosciences and Engineering, 2014, 11(4): 841-875. doi: 10.3934/mbe.2014.11.841

References

  • 1. Ecology, 75 (1994), 1118-1130.
  • 2. J. Theor. Biol., 259 (2009), 209-218.
  • 3. Estuaties, 25 (2002), 704-726.
  • 4. Phil. Trans. R. Soc. B, 367 (2012), 2935-2944.
  • 5. Am. Nat., 176 (2010), 162-176.
  • 6. In Primary Productivity and Biogeochemical Cycles in the Sea, 43 (1992), 213-237.
  • 7. Am. Nat., 176 (2010), E109-E127.
  • 8. Proc. Natl. Acad. Sci. USA, 107 (2010), 121-126.
  • 9. J. Math. Biol., 34 (1996), 579-612.
  • 10. J. Theor. Biol., 176 (1995), 91-102.
  • 11. Am. Nat., 169 (2007), 173-191.
  • 12. Am. Nat., 155 (2000), 200-218.
  • 13. Am. Nat., 156 (2000), S77-S101.
  • 14. J. Mar. Biol. Assoc. UK, 48 (1968), 689-733.
  • 15. Phil. Trans. R. Soc. B, 364 (2009), 1491-1498.
  • 16. Proc. Natl. Acad. Sci. USA, 102 (2005), 8927-8932.
  • 17. J. Plankton. Res., 32 (2010), 119-137.
  • 18. Proc. R. Soc. Lond. B, 270 (2003), 1015-1022.
  • 19. Funct. Ecol., 21 (2007), 465-477.
  • 20. J. EVOL. BIOL., 18 (2005), 1174-1177.
  • 21. Evol. Ecol., 12 (1998), 35-57.
  • 22. Am. Nat., 166 (2005), 496-505.
  • 23. Limnol. Oceanogr., 55 (2010), 2305-2316.
  • 24. Phil. Trans. R. Soc. B, 364 (2009), 1579-1591.
  • 25. J. Theor. Biol., 197 (1999), 149-162.
  • 26. J. Theor. Biol., 246 (2007), 278-289.
  • 27. J. Math. Biol., 63 (2011), 901-932.
  • 28. Theor. Popul. Biol., 65 (2004), 285-298.
  • 29. Proc. Natl. Acad. Sci. USA, 102 (2005), 5761-5766.
  • 30. J. Theor. Biol., 217 (2002), 369-381.
  • 31. Bull. Math. Biol., 62 (2000), 1137-1162.
  • 32. Proc. R. Soc. Lond. B, 265 (1998), 33-38.
  • 33. Proc. R. Soc. B, 277 (2010), 3163-3171.
  • 34. J. Theor. Biol., 277 (2011), 83-89.
  • 35. Ecol. Lett., 4 (2001), 519-529.
  • 36. Am. Nat., 95 (1961), 65-79.
  • 37. Can. Bull. Fish. Aquat. Sci., 214 (1986), 1-70.
  • 38. J. Plankton. Res., 16 (1994), 565-580.
  • 39. Science, 171 (1971), 385-387.
  • 40. NJ: Princeton University Press, Princeton, 2002.
  • 41. Am. Nat., 176 (2010), 367-380.
  • 42. Mar. Ecol. Prog. Ser., 379 (2009), 1-12.
  • 43. SIAM J. Appl. Math., 68 (2007), 503-522.
  • 44. J. Evol. Biol., 18 (2005), 1139-1154.
  • 45. Nature Reviews Genetics, 7 (2006), 510-523.
  • 46. Springer-Verlag, New York, 1990.
  • 47. Nature, 424 (2003), 303-306.
  • 48. J. Theor. Biol., 262 (2010), 528-543.

 

This article has been cited by

  • 1. Masato Yamamichi, Cédric L. Meunier, Angela Peace, Clay Prater, Megan A. Rúa, Rapid evolution of a consumer stoichiometric trait destabilizes consumer-producer dynamics, Oikos, 2015, 124, 7, 960, 10.1111/oik.02388
  • 2. Angélica L. González, Régis Céréghino, Olivier Dézerald, Vinicius F. Farjalla, Céline Leroy, Barbara A. Richardson, Michael J. Richardson, Gustavo Q. Romero, Diane S. Srivastava, Shawn Leroux, Ecological mechanisms and phylogeny shape invertebrate stoichiometry: A test using detritus-based communities across Central and South America, Functional Ecology, 2018, 32, 10, 2448, 10.1111/1365-2435.13197

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Lina Hao, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved