Mathematical Biosciences and Engineering, 2014, 11(1): 81-104. doi: 10.3934/mbe.2014.11.81.

Primary: 60G55, 92C20; Secondary: 90C15.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Non-Markovian spiking statistics of a neuron with delayed feedback in presence of refractoriness

1. Bogolyubov Institute for Theoretical Physics, Metrologichna str., 14-B, 03680 Kyiv

Spiking statistics of a self-inhibitory neuron is considered.The neuron receives excitatory input from a Poisson streamand inhibitory impulses through a feedback linewith a delay. After triggering, the neuron is in the refractorystate for a positive period of time.
    Recently, [35,6], it was proven for a neuron withdelayed feedback and without the refractory state,that the output stream of interspike intervals (ISI)cannot be represented as a Markov process.The refractory state presence, in a sense limits the memory range in thespiking process, which might restore Markov property to the ISI stream.
    Here we check such a possibility. For this purpose, we calculatethe conditional probability density $P(t_{n+1}\mid t_{n},\ldots,t_1,t_{0})$,and prove exactly that it does not reduce to $P(t_{n+1}\mid t_{n},\ldots,t_1)$for any $n\ge0$. That means, that activity of the system with refractory stateas well cannot be represented as a Markov process of any order.
    We conclude that it is namely the delayed feedback presencewhich results in non-Markovian statistics of neuronal firing.As delayed feedback lines are common forany realistic neural network, the non-Markovian statistics of the networkactivity should be taken into account in processing of experimental data.
  Figure/Table
  Supplementary
  Article Metrics

Keywords refractoriness.; Delayed feedback; non-Markovian statistics; reverberating neural networks; ISI probability distribution; non-renewal statistics

Citation: Kseniia Kravchuk, Alexander Vidybida. Non-Markovian spiking statistics of a neuron with delayed feedback in presence of refractoriness. Mathematical Biosciences and Engineering, 2014, 11(1): 81-104. doi: 10.3934/mbe.2014.11.81

References

  • 1. working paper series, (2006).
  • 2. J. Neurophysiol. 82 (1999), 489-494.
  • 3. J. Neurosci., 23 (2003), 859-866.
  • 4. Biological Cybernetics, 107 (2013), 95-106.
  • 5. PNAS, 88 (1991), 7834-7838.
  • 6. J. Neurophysiol., 71 (1994), 639-655.
  • 7. Formal Aspects of Computing, 96 (2007), 245-264.
  • 8. Z. Anat. Entwicklungsgesch, 134 (1971), 210-234.
  • 9. John Wiley & Sons, Inc., New York; Chapman & Hall, Limited, London, 1953.
  • 10. Phys. Rev. E, 79 (2009), 021905.
  • 11. International Journal of Neural Systems, 19 (2009), 295-308.
  • 12. Nature, 366 (1993), 683-687.
  • 13. Liverpool University Press, Liverpool, 1971.
  • 14. Lecture Notes in Biomathematics, Vol. 12, Springer-Verlag, Berlin-New York, 1976.
  • 15. Trends in Neurosciences, 27 (2004), 30-40.
  • 16. BioSystems, 112 (2013), 233-248.
  • 17. Biophys. J., 30 (1980), 9-26.
  • 18. J. Acoust. Am., 92 (1992), 803-806.
  • 19. J. Neurosci., 16 (1996), 3209-3218.
  • 20. in "Self-Organizing Systems" (eds. M. C. Yovitts and G. T. Jacobi, et al.), Spartan Books, Washington, (1962), 37-48.
  • 21. J. Physiol., 428 (1990), 61-77.
  • 22. J. Physiol., 336 (1983), 301-311.
  • 23. Neurocomputing, 70 (2007), 1717-1722.
  • 24. Sinauer Associates, Sunderland, 2001.
  • 25. Nature, 296 (1982), 441-444.
  • 26. Brain Res., 194 (1980), 359-369.
  • 27. J. Neurosci., 20 (2000), 6672-6683.
  • 28. Springer Study Edition, Springer, 1981.
  • 29. J. Neurosci., 17 (1997), 6352-6364.
  • 30. Brain Res., 48 (1972), 355-360.
  • 31. BioSystems, 48 (1998), 263-267.
  • 32. Ukrainian Mathematical Journal, 59 (2007), 1819-1839.
  • 33. BioSystems, 89 (2007), 160-165.
  • 34. Eur. Phys. J. B, 65 (2008), 577-584; Erratum: Eur. Phys. J. B, 69 (2009), 313.
  • 35. Ukrainian Mathematical Journal, 64 (2012), 1587-1609.
  • 36. BioSystems, 112, 3 (2013), 224-232.
  • 37. J. Neurophysiol., 93 (2005), 2396-2405.

 

This article has been cited by

  • 1. Alexander Vidybida, Kseniia Kravchuk, Spiking Statistics of Excitatory Neuron with Feedback, International Journal of Organizational and Collective Intelligence, 2012, 3, 2, 1, 10.4018/joci.2012040101

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Kseniia Kravchuk, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved