Mathematical Biosciences and Engineering, 2014, 11(3): 621-639. doi: 10.3934/mbe.2014.11.621.

Primary: 92C45, 92B05; Secondary: 37N25, 92C30, 92C42.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Modeling the endocrine control of vitellogenin production in female rainbow trout

1. Department of Pathology, University of Wisconsin Hospital and Clinics, Madison WI 53792
2. Department of Mathematics and Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706
3. Battelle Pacific Northwest National Laboratory, Marine Sciences Laboratory, Sequim, WA 98382
4. Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID 83844
5. Department of Statistics, Ohio State University, Columbus, OH 43210
6. Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115
7. Division of Pharmaceutics, Ohio State University, Columbus, OH 43210

   

The rainbow trout endocrine system is sensitive to changes in annual day length, which is likely the principal environmental cue controlling its reproductive cycle. This study focuses on the endocrine regulation of vitellogenin (Vg) protein synthesis, which is the major egg yolk precursor in this fish species.We present a model of Vg production in female rainbowtrout which incorporates a biological pathway beginningwith sex steroid estradiol-17β levels in the plasma andconcluding with Vg secretion by the liver and sequestration in theoocytes. Numerical simulation results based on this model are comparedwith experimental data for estrogen receptor mRNA, Vg mRNA, and Vgin the plasma from female rainbow trout over a normal annual reproductivecycle. We also analyze the response of the model to parameter changes.The model is subsequently tested against experimental data from femaletrout under a compressed photoperiod regime. Comparison of numericaland experimental results suggests the possibility of a time-dependentchange in oocyte Vg uptake rate.This model is part of a larger effort that is developing a mathematical description of the endocrine control of reproduction in female rainbow trout. We anticipate that these mathematical and computational models will play an important role in future regulatory toxicity assessments and in the prediction of ecological risk.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Endocrine control; pharmacokinetic/pharmacodynamic model.; vitellogenin

Citation: Kaitlin Sundling, Gheorghe Craciun, Irvin Schultz, Sharon Hook, James Nagler, Tim Cavileer, Joseph Verducci, Yushi Liu, Jonghan Kim, William Hayton. Modeling the endocrine control of vitellogenin production in female rainbow trout. Mathematical Biosciences and Engineering, 2014, 11(3): 621-639. doi: 10.3934/mbe.2014.11.621

References

  • 1. Environmental Toxicology and Chemistry, 29 (2010), 730-741, URL http://dx.doi.org/10.1002/etc.34.
  • 2. Fish Physiology and Biochemistry, 20 (1999), 143-154.
  • 3. DNA and cell biology, 29 (2010), 229-234.
  • 4. in Aquaculture: Fundamental and Applied Research, 81-102, (eds. B. Lahlou and P. Vitiello), Am. Geophys. Union, Washington, D.C., 1993.
  • 5. Aquaculture, 197 (2001), 63-98, URL http://www.sciencedirect.com/science/article/B6T4D-4313NM4-5/ 2/c982e2d89b0011c0dc686831087f3b14.
  • 6. Zoological Science (Tokyo), 27 (2010), 24-32.
  • 7. Proceedings of the National Academy of Sciences of the United States of America, 97.
  • 8. General and Comparative Endocrinology, 115 (1999), 155-166.
  • 9. Fish Physiology and Biochemistry, 2 (1986), 35-51.
  • 10. Journal of Comparative Physiology A, 164 (1988), 259-268.
  • 11. Molecular and cellular endocrinology, 124 (1996), 173-183.
  • 12. (submitted).
  • 13. Journal of Pharmacology and Experimental Therapeutics, 307 (2003), 93-109.
  • 14. Clinical pharmacology and therapeutics, 56 (1994), 406-419.
  • 15. Doctoral Thesis, Ohio State University, 2004.
  • 16. Marine environmental research, 62 (2006), S426-S432.
  • 17. Environmental Toxicology and Chemistry, 30 (2011), 64-76.
  • 18. Journal of Applied Toxicology, 33 (2013), 41-49.
  • 19. Toxicology and Applied Pharmacology, 224 (2007), 116-125.
  • 20. Stat. Anal. Data Min., 2 (2009), 192-208.
  • 21. Analytical Biochemistry, 350 (2006), 222-232.
  • 22. Environmental Toxicology and Chemistry, 28 (2009), 1288-1303.
  • 23. Reproductive Toxicology, 19 (2005), 395-409.
  • 24. Gene (Amsterdam), 392 (2007), 164-173.
  • 25. General and comparative endocrinology, 167 (2010), 326-330.
  • 26. Endocrinology, 151 (2010), 1668-1676.
  • 27. Journal of Biological Chemistry, 262 (1987), 4109-4115.
  • 28. Biology of reproduction, 60 (1999), 1057-1068.
  • 29. Fish Physiology and Biochemistry, 13 (1994), 219-232.
  • 30. The Journal of experimental zoology, 274 (1996), 163-170.
  • 31. Aquatic Toxicology, 51 (2001), 305-318.
  • 32. Environmental toxicology and chemistry / SETAC, 25 (2006), 2997-3005.
  • 33. Journal of Steroid Biochemistry and Molecular Biology, 20 (1984), 1083-1088.
  • 34. Fish Physiology and Biochemistry, 8 (1990), 211-219.
  • 35. Reviews in Fish Biology and Fisheries, 6 (1996), 287-318.
  • 36. Journal of Experimental Zoology, 246 (1988), 171-179, URL http://dx.doi.org/10.1002/jez.1402460209.
  • 37. Journal of Experimental Zoology, 248 (1988), 199-206, URL http://dx.doi.org/10.1002/jez.1402480211.
  • 38. Environmental Toxicology and Chemistry, 30 (2011), 9-21.
  • 39. Toxicological Sciences, (2009).
  • 40. General and Comparative Endocrinology, 165 (2010), 438-455.

 

This article has been cited by

  • 1. Cheryl A. Murphy, Roger M. Nisbet, Philipp Antczak, Natàlia Garcia-Reyero, Andre Gergs, Konstadia Lika, Teresa Mathews, Erik B. Muller, Diane Nacci, Angela Peace, Christopher H. Remien, Irvin R. Schultz, Karen H. Watanabe, , A Systems Biology Approach to Advancing Adverse Outcome Pathways for Risk Assessment, 2018, Chapter 14, 281, 10.1007/978-3-319-66084-4_14
  • 2. Jason R. Rohr, Christopher J. Salice, Roger M. Nisbet, The pros and cons of ecological risk assessment based on data from different levels of biological organization, Critical Reviews in Toxicology, 2016, 46, 9, 756, 10.1080/10408444.2016.1190685
  • 3. Irvin R. Schultz, Karen H. Watanabe, , A Systems Biology Approach to Advancing Adverse Outcome Pathways for Risk Assessment, 2018, Chapter 13, 263, 10.1007/978-3-319-66084-4_13
  • 4. Kendall Gillies, Stephen M. Krone, James J. Nagler, Irvin R. Schultz, Feilim Mac Gabhann, A Computational Model of the Rainbow Trout Hypothalamus-Pituitary-Ovary-Liver Axis, PLOS Computational Biology, 2016, 12, 4, e1004874, 10.1371/journal.pcbi.1004874
  • 5. Jan A. Mennigen, Micromanaging metabolism—a role for miRNAs in teleost energy metabolism, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2016, 199, 115, 10.1016/j.cbpb.2015.09.001
  • 6. Joseph H. Bisesi, Sarah E. Robinson, Candice M. Lavelle, Thuy Ngo, Blake Castillo, Hayleigh Crosby, Keira Liu, Dipesh Das, Jamie Plazas-Tuttle, Navid B. Saleh, P. Lee Ferguson, Nancy D. Denslow, Tara Sabo-Attwood, Influence of the Gastrointestinal Environment on the Bioavailability of Ethinyl Estradiol Sorbed to Single-Walled Carbon Nanotubes, Environmental Science & Technology, 2017, 51, 2, 948, 10.1021/acs.est.6b04728
  • 7. Valery E. Forbes, Nika Galic, Next-generation ecological risk assessment: Predicting risk from molecular initiation to ecosystem service delivery, Environment International, 2016, 91, 215, 10.1016/j.envint.2016.03.002

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Kaitlin Sundling, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved