Mathematical Biosciences and Engineering, 2014, 11(3): 523-546. doi: 10.3934/mbe.2014.11.523.

Primary: 76Z05, 74F10, 74L15; Secondary: 76Z05.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Effect of intraocular pressure on the hemodynamics of the central retinal artery: A mathematical model

1. Department of Mathematical Sciences, Indiana University - Purdue University at Indianapolis, Indianapolis, IN
2. Department of Ophthalmology, Department of Cellular & Integrative Physiology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN
3. Department of Electro Optics, Jerusalem College of Technology, Jerusalem
4. Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN

Retinal hemodynamics plays a crucial role in the pathophysiology of several ocular diseases.There are clear evidences that the hemodynamics of the central retinal artery (CRA) is strongly affected by the level of intraocular pressure (IOP), which is the pressure inside the eye globe. However, the mechanisms through which this occurs are still elusive. The main goal of this paper is to develop a mathematical model that combines the mechanical action of IOP and the blood flow in the CRA to elucidate the mechanisms through which IOP elevation affects the CRA hemodynamics. Our model suggests that the development of radial compressive regions in the lamina cribrosa (a collagen structure in the optic nerve pierced by the CRA approximately in its center) might be responsible for the clinically-observed blood velocity reduction in the CRA following IOP elevation. The predictions of the mathematical model are in very good agreement with experimental and clinical data. Our model also identifies radius and thickness of the lamina cribrosa as major factors affecting the IOP-CRA relationship, suggesting that anatomical differences among individuals might lead to different hemodynamic responses to IOP elevation.
  Figure/Table
  Supplementary
  Article Metrics

Keywords lamina cribrosa.; fluid-structure interaction; central retinal artery; intraocular pressure; Ocular blood flow

Citation: Giovanna Guidoboni, Alon Harris, Lucia Carichino, Yoel Arieli, Brent A. Siesky. Effect of intraocular pressure on the hemodynamics of the central retinal artery: A mathematical model. Mathematical Biosciences and Engineering, 2014, 11(3): 523-546. doi: 10.3934/mbe.2014.11.523

References

  • 1. Ophthalmology, 118 (2011), 52-59.
  • 2. Circ. Res., 76 (1995), 468-478.
  • 3. Invest. Ophthalmol. Vis. Sci., 50 (2009), 4351-4359.
  • 4. Invest. Ophthalmol. Vis. Sci., 41 (2000), 40-48.
  • 5. Prog. Retin. Eye Res., 24 (2005), 39-73.
  • 6. Am. J. Ophthalmol., 149 (2010), 704-712.
  • 7. Acta Ophthalmol. Scand., 82 (2004), 419-425.
  • 8. Am. J. Ophthalmol., 144 (2007), 525-532.
  • 9. J. Biomech., 32 (1999), 579-584.
  • 10. Curr. Eye Res., 25 (2002), 341-345.
  • 11. Curr. Eye Res., 23 (2001), 215-225.
  • 12. Clin. Interv. Aging., 3 (2008), 473-482.
  • 13. Curr. Eye Res., 16 (1997), 1024-1029.
  • 14. Prog. Retin. Eye Res., 20 (2001), 319-349.
  • 15. http://www.freefem.org/ff++/.
  • 16. $2^{nd}$ edition, Springer-Verlag, New York, 1997.
  • 17. $2^{nd}$ edition, Springer-Verlag, New York, 1993.
  • 18. Ann. Biomed. Eng., 38 (2010), 1566-1585.
  • 19. Microvasc. Res., 80 (2010), 99-109.
  • 20. Comput. Methods Programs Biomed., 102 (2011), 35-46.
  • 21. Med. Eng. Phys., 33 (2011), 810-823.
  • 22. Invest. Ophthalmol. Vis. Sci., 44 (2003), 3382-3387.
  • 23. Invest. Ophthalmol. Vis. Sci., 45 (2004), 2272-2278.
  • 24. Ophthalmology, 112 (2005), 33-39.
  • 25. Arch. Ophthalmol., 128 (2010), 541-550.
  • 26. J. Coupled Syst. Multiscale Dyn., 1(1) (2013), 1-21.
  • 27. Br. J. Ophthalmol., 80 (1996), 1055-1059.
  • 28. Elsevier, Philadelphia, 2003.
  • 29. Can. J. Ophthalmol., 43 (2008), 328-336.
  • 30. Eur. J. Ophthalmol., 23(2) (2013), 139-146.
  • 31. Prog. Retin. Eye Res., 20 (2001), 595-624.
  • 32. Surv. Ophthalmol., 52 (2007), 32-49.
  • 33. Eur. J. Ophthalmol., 19 (2009), 790-797.
  • 34. Invest. Ophthalmol. Vis. Sci., 32 (1991), 401-405.
  • 35. Invest. Ophthalmol. Vis. Sci., 46 (2005), 1275-1279.
  • 36. Arc. Ophthalmol., 130 (2012), 312-318.
  • 37. Arc. Ophthalmol., 112 (1994), 821-829.
  • 38. Ophthalmic Epidemiol., 14 (2007), 166-172.
  • 39. Ophthalmology, 114 (2007), 1965-1972.
  • 40. Netw. Heterog. Media, 2 (2007), 397-423.
  • 41. Clin. Ophthalmol., 2 (2008), 849-861.
  • 42. Invest. Ophthalmol. Vis. Sci., 39 (1998), 3236-3242.
  • 43. Invest. Ophthalmol. Vis. Sci., 43 (2002), 1419-1428.
  • 44. Br. J. Ophthalmol., 88 (2004), 1299-1304.
  • 45. J. Biomech. Eng., 128 (2006), 496-504.
  • 46. Exp. Eye Res., 90 (2010), 277-284.
  • 47. Can. J. Ophthalmol., 43 (2008), 295-301.
  • 48. Br. J. Ophthalmol., 81 (1997), 350-354.
  • 49. Prog. Retin. Eye Res., 27 (2008), 284-330.
  • 50. Comput. Visual Sci., 2 (2000), 163-197.
  • 51. Surv. Ophthalmol., 48 (2003), 295-313.
  • 52. Arch. Ophthalmol., 123 (2005), 1547-1553.
  • 53. Invest. Ophthalmol. Vis. Sci., 50 (2009), 2175-2184.
  • 54. J. Glaucoma, 18 (2009), 595-600.
  • 55. Invest. Ophthalmol. Vis. Sci., 45 (2004), 4378-4387.
  • 56. Exp. Eye Res., 85 (2007), 312-322.
  • 57. Biomech. Model. Mechanobiol., 8 (2009), 85-98.
  • 58. Invest. Ophthalmol. Vis. Sci., 52 (2011), 9023-9032.
  • 59. Invest. Ophthalmol. Vis. Sci., 53 (2012), 2658-2667.
  • 60. Invest. Ophthalmol. Vis. Sci., 53(7) (2012), 4270-4278.
  • 61. Invest. Ophthalmol. Vis. Sci., 53 (2012), 6870-6879.
  • 62. N. Engl. J. Med., 325 (1991), 1412-1417.
  • 63. Curr. Opin. Ophthalmol., 7 (1996), 93-98.
  • 64. J. Biorheol., 23 (2009), 77-86.
  • 65. JAMA, 266 (1991), 369-374.
  • 66. Arch. Ophthalmol., 112 (1994), 1068-1076.
  • 67. Exp. Eye Res., 14 (1972), 29-39.
  • 68. J. Glaucoma, 15 (2006), 548-551.

 

This article has been cited by

  • 1. Jihene Malek, Ahmad Taher Azar, Boutheina Nasralli, Mehdi Tekari, Heykel Kamoun, Rached Tourki, Computational analysis of blood flow in the retinal arteries and veins using fundus image, Computers & Mathematics with Applications, 2015, 69, 2, 101, 10.1016/j.camwa.2014.11.017
  • 2. Paola Causin, Giovanna Guidoboni, Francesca Malgaroli, Riccardo Sacco, Alon Harris, , Progress in Industrial Mathematics at ECMI 2014, 2016, Chapter 41, 311, 10.1007/978-3-319-23413-7_41
  • 3. 贞丽 林, Relationship between Retinal Vein Occlusion and Carotid Artery Hemodynamic, Hans Journal of Ophthalmology, 2016, 05, 03, 49, 10.12677/HJO.2016.53009
  • 4. Dmitry M. Shamaev, Petr V. Luzhnov, Elena N. Iomdina, , EMBEC & NBC 2017, 2018, Chapter 250, 1000, 10.1007/978-981-10-5122-7_250
  • 5. Jihene Malek, Ahmad Taher Azar, Rached Tourki, Impact of retinal vascular tortuosity on retinal circulation, Neural Computing and Applications, 2015, 26, 1, 25, 10.1007/s00521-014-1657-2
  • 6. Paola Causin, Giovanna Guidoboni, Alon Harris, Daniele Prada, Riccardo Sacco, Samuele Terragni, A poroelastic model for the perfusion of the lamina cribrosa in the optic nerve head, Mathematical Biosciences, 2014, 257, 33, 10.1016/j.mbs.2014.08.002
  • 7. Yoon Kyung Kim, Undarmaa Tumurbaatar, Young-Hoon Ohn, Seung Joo Ha, Ka Hee Park, Cerebrospinal Fluid Pressure and Trans-lamina Cribrosa Pressure Difference in Open-angle Glaucoma: KNHANES V, Journal of the Korean Ophthalmological Society, 2016, 57, 9, 1392, 10.3341/jkos.2016.57.9.1392
  • 8. Min Hee Suh, Linda M. Zangwill, Patricia Isabel C. Manalastas, Akram Belghith, Adeleh Yarmohammadi, Felipe A. Medeiros, Alberto Diniz-Filho, Luke J. Saunders, Siamak Yousefi, Robert N. Weinreb, Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects, Ophthalmology, 2016, 123, 11, 2309, 10.1016/j.ophtha.2016.07.023
  • 9. Josh C Gross, Alon Harris, Brent A Siesky, Riccardo Sacco, Aaditya Shah, Giovanna Guidoboni, Mathematical modeling for novel treatment approaches to open-angle glaucoma, Expert Review of Ophthalmology, 2017, 12, 6, 443, 10.1080/17469899.2017.1383896
  • 10. Min Hee Suh, Linda M. Zangwill, Patricia Isabel C. Manalastas, Akram Belghith, Adeleh Yarmohammadi, Felipe A. Medeiros, Alberto Diniz-Filho, Luke J. Saunders, Robert N. Weinreb, Deep Retinal Layer Microvasculature Dropout Detected by the Optical Coherence Tomography Angiography in Glaucoma, Ophthalmology, 2016, 123, 12, 2509, 10.1016/j.ophtha.2016.09.002
  • 11. Emily Nelson, Lealem Mulugeta, Jerry Myers, Microgravity-Induced Fluid Shift and Ophthalmic Changes, Life, 2014, 4, 4, 621, 10.3390/life4040621
  • 12. Paola Causin, Giovanna Guidoboni, Francesca Malgaroli, Riccardo Sacco, Alon Harris, Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation, Biomechanics and Modeling in Mechanobiology, 2016, 15, 3, 525, 10.1007/s10237-015-0708-7
  • 13. Hanjing Tian, Long Li, Fan Song, Study on the deformations of the lamina cribrosa during glaucoma, Acta Biomaterialia, 2017, 55, 340, 10.1016/j.actbio.2017.03.028
  • 14. Julia C. Arciero, Paola Causin, Francesca Malgaroli, Mathematical methods for modeling the microcirculation, AIMS Biophysics, 2017, 4, 3, 362, 10.3934/biophy.2017.3.362
  • 15. A. Tatone, F. Recrosi, R. Repetto, G. Guidoboni, From species diffusion to poroelasticity and the modeling of lamina cribrosa, Journal of the Mechanics and Physics of Solids, 2018, 10.1016/j.jmps.2018.11.017
  • 16. Lina Siaudvytyte, , Biophysical Properties in Glaucoma, 2019, Chapter 5, 25, 10.1007/978-3-319-98198-7_5
  • 17. Alon Harris, Josh Gross, Daniele Prada, Brent Siesky, Alice C. Verticchio Vercellin, Lauren Saint, Giovanna Guidoboni, , Intraocular and Intracranial Pressure Gradient in Glaucoma, 2019, Chapter 33, 225, 10.1007/978-981-13-2137-5_33
  • 18. Riccardo Sacco, Giovanna Guidoboni, Aurelio Giancarlo Mauri, , A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences, 2019, 295, 10.1016/B978-0-12-812518-2.00021-4
  • 19. , , A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences, 2019, 805, 10.1016/B978-0-12-812518-2.00047-0
  • 20. Fabrizia Salerni, Rodolfo Repetto, Alon Harris, Peter Pinsky, Christophe Prud’homme, Marcela Szopos, Giovanna Guidoboni, Sakamuri V. Reddy, Biofluid modeling of the coupled eye-brain system and insights into simulated microgravity conditions, PLOS ONE, 2019, 14, 8, e0216012, 10.1371/journal.pone.0216012
  • 21. Daniele Prada, Alon Harris, Giovanna Guidoboni, Lucas Rowe, Alice Chandra Verticchio-Vercellin, Sunu Mathew, , Ocular Fluid Dynamics, 2019, Chapter 2, 23, 10.1007/978-3-030-25886-3_2
  • 22. Julia Arciero, Lucia Carichino, Simone Cassani, Giovanna Guidoboni, , Ocular Fluid Dynamics, 2019, Chapter 5, 101, 10.1007/978-3-030-25886-3_5
  • 23. Alon Harris, Giovanna Guidoboni, Brent Siesky, Sunu Mathew, Alice C. Verticchio Vercellin, Lucas Rowe, Julia Arciero, Ocular blood flow as a clinical observation: value, limitations and data analysis, Progress in Retinal and Eye Research, 2020, 100841, 10.1016/j.preteyeres.2020.100841

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Giovanna Guidoboni, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved