Mathematical Biosciences and Engineering, 2014, 11(2): 257-283. doi: 10.3934/mbe.2014.11.257.

Primary: 37N35, 49-XX, 93D20; Secondary: 92Bxx.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Stability and optimal control for some classes of tritrophic systems

1. previously at CNR, Institute of Applied Mathematics and Information Technology “Enrico Magenes”, Via E. Bassini 15, 20133 Milano
2. CNR, Institute of Applied Mathematics and Information Technology “Enrico Magenes”, Via E. Bassini 15, 20133 Milano
3. Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25125 Brescia

The objective of this paper is to study an optimal resource management problem for some classes of tritrophic systems composed by autotrophic resources (plants), bottom level consumers (herbivores) and top level consumers (humans). The first class of systems we discuss are linear chains, in which biomass flows from plants to herbivores, and from herbivores to humans. In the second class of systems humans are omnivorous and hence compete with herbivores for plant resources. Finally, in the third class of systems humans are omnivorous, but the plant resources are partitioned so that humans and herbivores do not complete for the same ones. The three trophic chains are expressed as Lotka-Volterra models, which seems to be a suitable choice in contexts where there is a shortage of food for the consumers. Our model parameters are taken from the literature on agro-pastoral systems in Sub-Saharan Africa.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Lotka-Volterra; Trophic system; stability; optimal control.; coexistence; extinction

Citation: Luca Galbusera, Sara Pasquali, Gianni Gilioli. Stability and optimal control for some classes of tritrophic systems. Mathematical Biosciences and Engineering, 2014, 11(2): 257-283. doi: 10.3934/mbe.2014.11.257

References

  • 1. Math. Model. Nat. Phenom., 1 (2006), 120-135.
  • 2. Appl. Math. Lett., 22 (2009), 1062-1065.
  • 3. Annual Review of Ecology and Systematics, 26 (1995), 113-133.
  • 4. Trends in Ecology & Evolution, 14 (1999), 280-283.
  • 5. Ecological Modelling, 32 (1986), 267-279.
  • 6. J. Econom. Dynam. Control, 31 (2007), 3965-3985.
  • 7. Agricultural Systems, 25 (1987), 199-218.
  • 8. Appl. Math. Model., 33 (2009), 2282-2292.
  • 9. Human Ecology, 32 (2004), 465-486.
  • 10. Chaos, Solitons and Fractals, 12 (2001), 2087-2093.
  • 11. Ecological Modelling, 179 (2004), 235-245.
  • 12. SIAM J. Control Optim., 19 (1981), 561-585.
  • 13. Bollettino di Zoologia Agraria e bachicoltura, Serie II, 41 (2009), 21-40.
  • 14. Ecological Economics, 52 (2005), 383-396.
  • 15. in Memoirs of the Entomological Society of Canada, Vol. 48, Ottawa, Canada, 1966.
  • 16. Yale University Press, New Haven, Connecticut, 1961.
  • 17. Biosystems, 109 (2012), 220-232.
  • 18. Theoretical Population Biology, 67 (2005), 85-99.
  • 19. Theoretical Population Biology, 63 (2003), 269-279.
  • 20. in Proceedings of the ILCA/IDRC Workshop held at ILCA, Addis Ababa, Ethiopia, 1983.
  • 21. Nature, 11 (1994), 88-90.
  • 22. J. Math. Anal. Appl., 173 (1993), 603-619.
  • 23. Science, 260 (1993), 17-36.
  • 24. in Sustainable agro-pastoral systems: Concepts, approaches and tools, CNR-IMATI, Milan, Italy, March 27, 2012. Available from: http://www.mi.imati.cnr.it/ sara/biodiversita/paginaweb.html.
  • 25. Population Ecology, 48 (2006), 139-149.
  • 26. Ecological Complexity, 5 (2008), 73-85.
  • 27. in Lost Crops of Africa: Vol. I: Grains, National Academies Press, Washington, 1996.
  • 28. Ecological Economics, 39 (2001), 101-114.
  • 29. African Journal of Environmental Science and Technology, 2 (2008), 222-230.
  • 30. Ecological Modelling, 121 (1999), 1-16.
  • 31. Applied Mathematics and Computation, 200 (2008), 557-573.
  • 32. Ecological Economics, 26 (1998), 227-242.
  • 33. in Grassland of the World, 2005, 19-65.
  • 34. Available from: http://apps.who.int/gho/data/.
  • 35. in Recent Advances in Optimization (ed. Alberto Seeger), Lecture Notes in Economics and Mathematical Systems, Vol. 563, Springer, Berlin, 2006, 269-289.
  • 36. J. Theoret. Biol., 241 (2006), 506-521.
  • 37. J. Theoret. Biol., 241 (2006), 522-532.
  • 38. Biosystems, 31 (1993), 39-47.
  • 39. Math. Biosci., 170 (2001), 173-186.
  • 40. Theoretical Population Biology, 72 (2007), 111-120.
  • 41. "Mir", Moscow, 1983.
  • 42. John Wiley & Sons, New York, 1977.

 

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Luca Galbusera, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved