Mathematical Biosciences and Engineering, 2014, 11(6): 1375-1393. doi: 10.3934/mbe.2014.11.1375.

Primary: 34D20, 34D23; Secondary: 92D30.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures

1. Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501
2. Department of Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555
3. Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba Meguro-ku, Tokyo 153-8914

In this paper, we formulate an SIR epidemic model with hybrid of multigroup and patch structures, which can be regarded as a model for the geographical spread of infectious diseases or a multi-group model with perturbation. We show that if a threshold value, which corresponds to the well-known basic reproduction number $R_0$, is less than or equal to unity, then the disease-free equilibrium of the model is globally asymptotically stable. We also show that if the threshold value is greater than unity, then the model is uniformly persistent and has an endemic equilibrium. Moreover, using a Lyapunov functional technique, we obtain a sufficient condition under which the endemic equilibrium is globally asymptotically stable. The sufficient condition is satisfied if the transmission coefficients in the same groups are large or the per capita recovery rates are small.
  Figure/Table
  Supplementary
  Article Metrics

Keywords multigroup; SIR epidemic model; patch; global asymptotic stability; Lyapunov functional.

Citation: Toshikazu Kuniya, Yoshiaki Muroya, Yoichi Enatsu. Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures. Mathematical Biosciences and Engineering, 2014, 11(6): 1375-1393. doi: 10.3934/mbe.2014.11.1375

References

  • 1. Oxford University, Oxford, 1991.
  • 2. in Modeling and Dynamics of Infectious Diseases (eds. Z. Ma, Y. Zhou and J. Wu), Higher Education Press, 2009, 65-122.
  • 3. in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, 1956, 81-109.
  • 4. Academic Press, New York, 1979.
  • 5. Appl. Math. Comput., 218 (2011), 4391-4400.
  • 6. 1st edition, John Wiley and Sons, Chichester, 2000.
  • 7. Math. Biosci., 80 (1986), 19-22.
  • 8. J. Dynam. Diff. Equat., 6 (1994), 583-600.
  • 9. Canadian Appl. Math. Quart., 14 (2006), 259-284.
  • 10. Proc. Amer. Math. Soc., 136 (2008), 2793-2802.
  • 11. in Bioterrorism (eds. H. T. Banks and C. Castillo-Chavez), SIAM, 2003, 211-236.
  • 12. J. Math. Anal. Appl., 308 (2005), 343-364.
  • 13. Math. Med. Biol., 21 (2004), 75-83.
  • 14. Discrete Cont. Dyn. Sys. Series B, 19 (2014), 1105-1118.
  • 15. SIAM, Philadelphia, 1976.
  • 16. Math. Biosci., 160 (1999), 191-213.
  • 17. Canadian Appl. Math. Quart., 17 (2009), 175-187.
  • 18. J. Diff. Equat., 284 (2010), 1-20.
  • 19. J. Math. Anal. Appl., 361 (2010), 38-47.
  • 20. Acta Mathematica Scientia, 33 (2013), 341-361.
  • 21. Nonlinear Anal. RWA, 13 (2012), 1581-1592.
  • 22. Cambridge University Press, Cambridge, 1995.
  • 23. Comput. Math. Appl., 60 (2010), 2286-2291.
  • 24. Math. Biosci., 180 (2002), 29-48.
  • 25. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962.
  • 26. Math. Biosci., 190 (2004), 97-112.
  • 27. Nonlinear Anal. RWA, 11 (2010), 995-1004.

 

This article has been cited by

  • 1. Yoshiaki Muroya, Toshikazu Kuniya, Global stability for a delayed multi-group SIRS epidemic model with cure rate and incomplete recovery rate, International Journal of Biomathematics, 2015, 08, 04, 1550048, 10.1142/S1793524515500485
  • 2. Yoichi Enatsu, Toshikazu Kuniya, Yoshiaki Muroya, Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection, Discrete and Continuous Dynamical Systems - Series B, 2015, 20, 9, 3057, 10.3934/dcdsb.2015.20.3057
  • 3. Raimund Bürger, Gerardo Chowell, Pep Mulet, Luis M. Villada, Modelling the spatial-temporal progression of the 2009 A/H1N1 influenza pandemic in Chile, Mathematical Biosciences and Engineering, 2015, 13, 1, 43, 10.3934/mbe.2016.13.43
  • 4. Raimund Bürger, Gerardo Chowell, Elvis Gavilán, Pep Mulet, Luis M. Villada, Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents, Mathematical Biosciences and Engineering, 2017, 15, 1, 95, 10.3934/mbe.2018004

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Toshikazu Kuniya, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved