Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Dynamics of two phytoplankton populations under predation

1. Department of Mathematical Sciences, Cameron University, 2800 West Gore Boulevard, Lawton, OK 73505

The aim of this paper is to investigate the manner in which predation and single-nutrient competition affect the dynamics of a non-toxic and a toxic phytoplankton species in a homogeneous environment (such as a chemostat). We allow for the possibility that both species serve as prey for an herbivorous zooplankton species. We assume that the toxic phytoplankton species produces toxins that affect only its own growth (autotoxicity). The autotoxicity assumption is ecologically explained by the fact that the toxin-producing phytoplankton is not mature enough to produce toxins that will affect the growth of its nontoxic competitor. We show that, in the absence of phytotoxic interactions and nutrient recycling, our model exhibits uniform persistence. The removal rates are distinct and we use general response functions. Finally, numerical simulations are carried out to show consistency with theoretical analysis. Our model has similarities with other food-chain models. As such, our results may be relevant to a wider spectrum of population models, not just those focused on plankton. Some open problems are discussed at the end of this paper.
  Figure/Table
  Supplementary
  Article Metrics

Keywords zooplankton; phytoplankton; Plankton; chemostat; uniform persistence.; predation

Citation: Jean-Jacques Kengwoung-Keumo. Dynamics of two phytoplankton populations under predation. Mathematical Biosciences and Engineering, 2014, 11(6): 1319-1336. doi: 10.3934/mbe.2014.11.1319

References

  • 1. Amer. Natur., 139 (1992), 663-668.
  • 2. Biotechnol. Bioeng., 19 (1977), 1375-1386.
  • 3. Math. Biosci., 118 (1993), 127-180.
  • 4. J. Math. Biol., 28 (1990), 99-111.
  • 5. Biochem. J., 85 (1962), 440-447.
  • 6. Proc. Amer. Math. Soc., 96 (1986), 425-430.
  • 7. J. Diff. Equ., 63 (1986), 255-263.
  • 8. J. Math. Biol., 24 (1986), 167-191.
  • 9. Math. Biosci., 83 (1987), 1-48.
  • 10. J. Biol. Syst., 16 (2008), 547-564.
  • 11. Eco. Let., 5 (2002), 302-315.
  • 12. Heath, Boston, 1965.
  • 13. Heidelberg, Springr-Verlag, 1977.
  • 14. J. Plankton Res., 23 (2001), 389-413.
  • 15. Dyna. Stabi. Syst., 11 (1996), 347-370.
  • 16. Bull. Math. Biol., 61 (1999), 303-339.
  • 17. J. Theor. Biol., 191 (1998), 353-376.
  • 18. in Ocean. Sound Scat. Predic. (eds. N. R. Anderson and B. G. Zahurance), Plenum, New York, 1977, 749-765.
  • 19. in Proceedings of the First International Conference on Mathematical Modeling (eds. J. R. Avula), Vol. IV, University of Missouri Press, Rolla, 1977, 2081-2088.
  • 20. J. Math. Biol., 5 (1978), 261-280.
  • 21. Sci., 207 (1980), 1491-1493.
  • 22. Amer. Natur., 144 (1994), 741-771.
  • 23. SIAM J. Appl. Math., 34 (1978), 760-763.
  • 24. Yale University Press, New Haven, 1961.
  • 25. Comput. Math. Appl., 49 (2005), 375-378.
  • 26. J. Bacteriol., 113 (1976), 834-840.
  • 27. Ph.D. dissertation, New Mexico State University, Las Cruces, New Mexico, U.S.A., 2012.
  • 28. J. Theor. Biol., 50 (1975), 185-201.
  • 29. J. Math. Anal. and Appl., 242 (2000), 75-92.
  • 30. W. A. Benjamin, N.Y., 1971.
  • 31. Hermann et Cie, Paris, 1942.
  • 32. Ecol. Model., 198 (2006), 163-173.
  • 33. Third edition, Springer, 2001.
  • 34. Amer. Natur., 105 (1971), 575-587.
  • 35. Theor. Popul. Biol., 75 (2009), 68-75.
  • 36. J. Theor. Biol., 208 (2001), 15-26.
  • 37. J. Math. Biol., 31 (1993), 633-654.
  • 38. J. Theor. Biol., 244 (2007), 218-227.
  • 39. J. Plankton Res., 14 (1992), 157-172.
  • 40. Math. Biosci. Eng., 10 (2013), 913-923.
  • 41. J. Math. Biol., 30 (1992), 755-763.
  • 42. J. Appl. Math., 52 (1992), 222-233.
  • 43. Biotechnol. Bioeng., 17 (1975), 1211-1235.

 

This article has been cited by

  • 1. Jean-Jacques Kengwoung-Keumo, Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation, Mathematical Biosciences and Engineering, 2016, 13, 4, 787, 10.3934/mbe.2016018

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Jean-Jacques Kengwoung-Keumo, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved