Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Spatial dynamics for a model of epidermal wound healing

1. Division of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069-7100
2. School of Mathematics and Statistics, Xidian University, Xi’an, Shaanxi 710071

In this paper, we consider the spatial dynamics for a non-cooperative diffusion system arising from epidermal wound healing.We shall establish the spreading speed and existence of traveling waves and characterize the spreading speed as the slowest speedof a family of non-constant traveling wave solutions. We also construct some new types of entire solutions which are different from the traveling wave solutions and spatial variable independent solutions. The traveling wave solutions provide the healing speed and describe how wound healing process spreads from one side of the wound. The entire solution exhibits the interaction of several waves originated from different locations of the wound. To the best of knowledge of the authors, it is the first time that it is shown that there is an entire solution in the model for epidermal wound healing.
  Figure/Table
  Supplementary
  Article Metrics

Keywords non-cooperative diffusion systems; epidermal wound healing.; entire solution; Traveling waves; spreading speed

Citation: Haiyan Wang, Shiliang Wu. Spatial dynamics for a model of epidermal wound healing. Mathematical Biosciences and Engineering, 2014, 11(5): 1215-1227. doi: 10.3934/mbe.2014.11.1215

References

  • 1. in Partial Differential Equations and Related Topics (ed. J. A. Goldstein), Lecture Notes in Mathematics Ser., 446, Springer-Verlag, Berlin, 1975, 5-49.
  • 2. Adv. Math., 30 (1978), 33-76.
  • 3. Math. Biosci., 124 (1994), 127-147.
  • 4. J. Dynam. Differential Equations, 14 (2002), 85-137.
  • 5. Phys. D, 165 (2002), 176-198.
  • 6. Ann. of Eugenics, 7 (1937), 355-369.
  • 7. Discrete Contin. Dyn. Syst., 12 (2005), 193-212.
  • 8. Comm. Pure Appl. Math., 52 (1999), 1255-1276.
  • 9. Cambridge University Press, Cambridge, 1985.
  • 10. SIAM J. Math. Anal., 40 (2008), 776-789.
  • 11. Bull. Moscow Univ. Math. Mech., 1 (1937), 1-26.
  • 12. Commun. Pure Appl. Math., 60 (2007), 1-40.
  • 13. J. Math. Pures Appl., 90 (2008), 492-504.
  • 14. J. Math. Biol., 45 (2002), 219-233.
  • 15. Math. Biosci., 196 (2005), 82-98.
  • 16. J. Math. Biol., 58 (2009), 323-338.
  • 17. Math. Biosci., 93 (1989), 269-295.
  • 18. Springer-Verlag, New York, 2003.
  • 19. J. Differential Equations, 237 (2007), 259-277.
  • 20. SIAM J. Math. Anal., 40 (2009), 2217-2240.
  • 21. Springer-Verlag, New York, 1984.
  • 22. Proc. R. Soc. London B, 241 (1990), 29-36.
  • 23. J. Math. Biol., 29 (1991), 389-404.
  • 24. Springer-Verlag, New York, 1994.
  • 25. J. Math. Biol., 8 (1979), 173-187.
  • 26. J. Differential Equations, 247 (2009), 887-905.
  • 27. Discrete and Continuous Dynamical Systems B, 17 (2012), 2243-2266.
  • 28. J. Nonlinear Sci., 21 (2011), 747-783.
  • 29. Nonlinearity, 23 (2010), 1609-1630.
  • 30. Trans. Amer. Math. Soc., 361 (2009), 2047-2084.
  • 31. J. Math. Biol., 45 (2002), 183-218.
  • 32. in Nonlinear Partial Differential Equations and Applications (ed. J. M. Chadam), Lecture Notes in Mathematics, 648, Springer-Verlag, Berlin, 1978, 47-96.
  • 33. Discrete Contin. Dyn. Syst., 23 (2009), 1087-1098.
  • 34. Nonlinearity, 25 (2012), 2785-2801.
  • 35. J. Dynam. Diff. Eqns., 25 (2013), 505-533.
  • 36. Discrete Contin. Dyn. Syst., 33 (2013), 921-946.
  • 37. Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 883-904.
  • 38. J. Math. Anal. Appl., 401 (2013), 85-97.
  • 39. Communications in Nonlinear Science and Numerical Simulation, 18 (2013), 2164-2176.

 

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Haiyan Wang, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved