Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Diffusion approximation of neuronal models revisited

1. Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4

Leaky integrate-and-fire neuronal models with reversal potentials have a number of different diffusion approximations, each depending on the form of the amplitudes of the postsynaptic potentials.Probability distributions of the first-passage times of the membrane potential in the original model and itsdiffusion approximations are numerically compared in order to find whichof the approximations is the most suitable one.The properties of the random amplitudes of postsynapticpotentials are discussed.It is shown on a simple example that the quality of the approximation depends directly on them.
  Figure/Table
  Supplementary
  Article Metrics

Keywords reversal potentials; Integrate-and-fire model; Stein's model; diffusion approximation.

Citation: Jakub Cupera. Diffusion approximation of neuronal models revisited. Mathematical Biosciences and Engineering, 2014, 11(1): 11-25. doi: 10.3934/mbe.2014.11.11

References

  • 1. Springer-Verlag, New York, 1998.
  • 2. Phys. Rev. E (3), 73 (2006), 061910, 9 pp.
  • 3. Biol. Cybern., 99 (2008), 279-301.
  • 4. J. Theor. Neurobiol., 2 (1983), 127-153.
  • 5. J. Physiol., 117 (1952), 500-544.
  • 6. Mass. MIT Press, Cambridge, 1989.
  • 7. Brain Res., 1434 (2012), 136-141.
  • 8. J. Theor. Biol., 166 (1994), 393-406.
  • 9. J. Theor. Biol., 107 (1984), 631-647.
  • 10. Biol. Cybern., 56 (1987), 19-26.
  • 11. Biol. Cybern., 73 (1995), 457-465.
  • 12. Biosystems, 25 (1991), 179-191.
  • 13. J. Theor. Biol., 171 (1994), 225-232.
  • 14. Notes taken by Charles E. Smith, Lecture Notes in Biomathematics, Vol. 14, Springer-Verlag, Berlin-New York, 1977.
  • 15. Biol. Cybern., 35 (1979), 1-9.
  • 16. Phys. Rev. E, 76 (2007), 021919.
  • 17. Springer Series in Synergetics, 18, Springer-Verlag, Berlin, 1989.
  • 18. Neural Comput., 17 (2005), 2301-2315.
  • 19. Springer-Verlag, Berlin, 1978.
  • 20. J. Theor. Neurobiol., 3 (1984), 67-77.
  • 21. Biophys. J., 5 (1965), 173-194.
  • 22. J. Theor. Biol., 77 (1979), 65-81.
  • 23. J. Theor. Biol., 83 (1980), 377-387.
  • 24. Comput. Biol. Med., 27 (1997), 1-7.
  • 25. J. Theor. Biol., 105 (1983), 345-368.

 

This article has been cited by

  • 1. Kamil Rajdl, Petr Lansky, Stein’s neuronal model with pooled renewal input, Biological Cybernetics, 2015, 109, 3, 389, 10.1007/s00422-015-0650-x
  • 2. Giuseppe D’Onofrio, Massimiliano Tamborrino, Petr Lansky, The Jacobi diffusion process as a neuronal model, Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28, 10, 103119, 10.1063/1.5051494

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Jakub Cupera, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved