Mathematical Biosciences and Engineering, 2014, 11(5): 1065-1090. doi: 10.3934/mbe.2014.11.1065.

Primary: 92B08, 92D08; Secondary: 92B04.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

What can mathematical models tell us about the relationship between circular migrations and HIV transmission dynamics?

1. Department of Global Health, University of Washington. Box 359927, 325 Ninth Ave Seattle WA 98104
2. Fred Hutchinson Cancer Research Center, PO Box 19024, 1100 Fairview Ave. N. Seattle WA 98109
3. Department of Anthropology, University of Washington, Campus Box 353100, Seattle WA 98195

   

Circular migrations are the periodic movement of individuals betweenmultiple locations, observed in parts of sub-SaharanAfrica. Relationships between circular migrations and HIV are complex,entailing interactions between migration frequency, partnershipstructure, and exposure to acute HIV infection. Mathematical modelingis a useful tool for understanding these interactions.
    Two modeling classes have dominated the HIV epidemiology and policyliterature for the last decade: one a form of compartmental models,the other network models. We construct models from each class, usingordinary differential equations and exponential random graph models,respectively.
    Our analysis suggests that projected HIV prevalence is highlysensitive to the choice of modeling framework. Assuming initial equalHIV prevalence across locations, compartmental models show noassociation between migration frequency and HIV prevalence orincidence, while network models show that migrations at frequenciesshorter than the acute HIV period predict greater HIV incidence andprevalence compared to longer migration periods. These differences arestatistically significant when network models are extended toincorporate a requirement for migrant men's multiple partnerships tooccur in different locations. In settings with circular migrations,commonly-used forms of compartmental models appear to miss keycomponents of HIV epidemiology stemming from interactions ofrelational and viral dynamics.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Circular migrations; Exponential Random Graph Models (ERGMs).; compartmental models; network models; HIV transmission modeling

Citation: Aditya S. Khanna, Dobromir T. Dimitrov, Steven M. Goodreau. What can mathematical models tell us about the relationship between circular migrations and HIV transmission dynamics?. Mathematical Biosciences and Engineering, 2014, 11(5): 1065-1090. doi: 10.3934/mbe.2014.11.1065

References

  • 1. AIDS, 22 (2008), 1055-1061.
  • 2. PLoS Med., 8 (2011), e1000423.
  • 3. Math. Biosci., 107 (1991), 413-430.
  • 4. Sex. Transm. Infect., 87 (2011), 646-653.
  • 5. International Migration Review, 33 (1999), 833-856.
  • 6. Public Health, 125 (2011), 318-323.
  • 7. Curr. Opin. HIV AIDS, 6 (2011), 124-130.
  • 8. Plos One, 5 (2010), e11539.
  • 9. PLoS ONE, 7 (2012), e43048.
  • 10. JAIDS- Journal of Acquired Immune Deficiency Syndrome, 47 (2008), S34-S39.
  • 11. Social Science & Medicine, 63 (2006), 1000-1010.
  • 12. Journal of Infectious Diseases, 191 (2005), S159-S167.
  • 13. {AIDS}, 21 (2007), 343-350.
  • 14. BMC Infect. Dis., 11 (2011), p216.
  • 15. Tropical Medicine & International Health, 15 (2010), 1458-1463.
  • 16. J. Math. Biol., 26 (1988), 1-25.
  • 17. in AIDS Epidemiology: Methodological Issues (eds. N. P. Jewell, K. Dietz and V. T. Farewell), Birkhäuser, 1992, 143-155.
  • 18. J. Theor. Biol., 288 (2011), 9-20.
  • 19. PLoS Medicine, 9 (2012), e1001245.
  • 20. Int. J. STD AIDS, 22 (2011), 558-567.
  • 21. Sex. Transm. Infect., 84 (2008), 4-11.
  • 22. PLoS Med., 9 (2012), e1001323.
  • 23. J. Infect. Dis., 191 (2005), S147-S158.
  • 24. Sex. Transm. Infect., 83 (2007), 458-462.
  • 25. AIDS and Behavior, 16 (2012), 312-322.
  • 26. Journal of the International AIDS Society, 14 (2011), p12.
  • 27. PLoS ONE, 7 (2012), e50522.
  • 28. J. Math. Biol., 26 (1988), 635-649.
  • 29. Seattle, WA, 2003. Version 2.0.
  • 30. Journal Of Infectious Diseases, 198 (2008), 687-693.
  • 31. Journal of the American Statistical Association, 103 (2008), 248-258.
  • 32. Sex. Transm. Infect., 87 (2011), 629-634.
  • 33. Princeton University Press, Princeton, 2008.
  • 34. Ecology Letters, 5 (2002), 20-29.
  • 35. J. Theor. Biol., 298 (2012), 147-153.
  • 36. Annu Rev Public Health, 25 (2004), 303-326.
  • 37. Epidemiology, 13 (2002), 622-624.
  • 38. Jpn. J. Infect. Dis., 58 (2005), 3-8.
  • 39. AIDS Behav., 16 (2012), 1746-1752.
  • 40. Statistical Methodology, 8 (2011), 319-339.
  • 41. American Journal of Epidemiology, 148 (1998), 88-96.
  • 42. South African Journal of Science, 96 (2000), 343-347.
  • 43. Health Transition Review, 7 (1997), 17-27.
  • 44. Sexualy Transmitted Diseases, 30 (2003), 149-156.
  • 45. AIDS, 17 (2003), 2245-2252.
  • 46. Journal of Ethnic and Migration Studies, 32 (2006), 649-666.
  • 47. AIDS Behav., 14 (2010), 11-16.
  • 48. Nature, 326 (1987), 137-142.
  • 49. Philosophical Transactions Of The Royal Society Of London Series B-Biological Sciences, 321 (1988), 565-607.
  • 50. Bulletin (New Series) of the American Mathematical Society, 44 (2007), 63-86.
  • 51. AIDS Behav., 18 (2014), 783-790.
  • 52. Journal of Statistical Software, 24 (2007), 1-24.
  • 53. American Journal of Public Health, 99 (2009), 1023-1031.
  • 54. Tropical Medicine & International Health, 11 (2006), 705-711.
  • 55. Vaccine, 29 (2011), 6079-6085.
  • 56. AIDS And Behavior, 12 (2008), 677-684.
  • 57. Lancet, 378 (2011), 256-268.
  • 58. Proceedings of the National Academy of Sciences, 91 (1994), 2407-2414.
  • 59. Epidemiology, 21 (2010), 349-359.
  • 60. PLoS ONE, 7 (2012), e50669.
  • 61. PLoS Comput. Biol., 7 (2011), e1001109.
  • 62. Hum. Biol., 63 (1991), 683-695.
  • 63. J. Int. AIDS Soc., 14 (2011), 44.
  • 64. Version 0.9-9, 2012.
  • 65. PLoS ONE, 7 (2012), e29098.
  • 66. J. Urban Health, 88 (2011), 1052-1062.
  • 67. Lancet, 375 (2010), 621-622.
  • 68. Mathematical Biosciences, 180 (2002), 29-48.
  • 69. PLoS ONE, 7 (2012), e41212.
  • 70. Journal Of Infectious Diseases, 191 (2005), 1403-1409.

 

This article has been cited by

  • 1. Mo’tassem Al-arydah, Robert Smith, Adding Education to “Test and Treat”: Can We Overcome Drug Resistance?, Journal of Applied Mathematics, 2015, 2015, 1, 10.1155/2015/781270
  • 2. Sarah T Roberts, Aditya S Khanna, Ruanne V Barnabas, Steven M Goodreau, Jared M Baeten, Connie Celum, Susan Cassels, Estimating the impact of universal antiretroviral therapy for HIV serodiscordant couples through home HIV testing: insights from mathematical models, Journal of the International AIDS Society, 2016, 19, 1, 20864, 10.7448/IAS.19.1.20864
  • 3. Wim Delva, Gabriel E. Leventhal, Stéphane Helleringer, Connecting the dots, AIDS, 2016, 30, 13, 2009, 10.1097/QAD.0000000000001184
  • 4. Nina T. Harawa, Russell Brewer, Victoria Buckman, Santhoshini Ramani, Aditya Khanna, Kayo Fujimoto, John A. Schneider, HIV, Sexually Transmitted Infection, and Substance Use Continuum of Care Interventions Among Criminal Justice–Involved Black Men Who Have Sex With Men: A Systematic Review, American Journal of Public Health, 2018, 108, S4, e1, 10.2105/AJPH.2018.304698
  • 5. Guillaume Cantin, Cristiana J. Silva, Influence of the topology on the dynamics of a complex network of HIV/AIDS epidemic models, AIMS Mathematics, 2019, 4, 4, 1145, 10.3934/math.2019.4.1145

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Aditya S. Khanna, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved