Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Computational modeling approaches to studying the dynamics of oncolytic viruses

1. Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92617

Oncolytic viruses specifically infect cancer cells, replicate in them, killthem, and spread to further tumor cells. They represent a targeted treatmentapproach that is promising in principle, but consistent success has yet tobe observed. Mathematical models can play an important role in analyzing thedynamics between oncolytic viruses and a growing tumor cell population,providing insights that can be useful for the further development of thistherapy approach. This article reviews different mathematical modelingapproaches ranging from ordinary differential equations to spatiallyexplicit agent-based models. Problems of model robustness are discussed andso are some clinically important insight derived from the models.
  Figure/Table
  Supplementary
  Article Metrics

Keywords therapy; mathematical models; Oncolytic viruses; spatial dynamics.; cancer; population dynamics

Citation: Dominik Wodarz. Computational modeling approaches to studying the dynamics of oncolytic viruses. Mathematical Biosciences and Engineering, 2013, 10(3): 939-957. doi: 10.3934/mbe.2013.10.939

References

  • 1. Curr. Cancer Drug Targets, 7 (2007), 127-131.
  • 2. Cancer Cell, 4 (2003), 7-11.
  • 3. Curr. Cancer Drug Targets, 7 (2007), 133-139.
  • 4. J. Gene. Med., 7 (2005), 1380-1389.
  • 5. Curr. Gene Ther., 5 (2005), 595-605.
  • 6. Mol. Ther., 15 (2007), 651-659.
  • 7. Mol. Med. Today, 2 (1996), 519-527.
  • 8. Cancer Biol. Ther., 2 (2003), S157-60.
  • 9. Oncogene, 24 (2005), 7817-7819.
  • 10. Oncogene, 24 (2005), 7640-7655.
  • 11. Nat. Rev. Cancer, 5 (2005), 965-976.
  • 12. Future Oncol., 1 (2005), 247-258.
  • 13. Curr. Opin. Mol. Ther., 8 (2006), 314-321.
  • 14. Cancer Lett., (2007).
  • 15. Viruses, 2 (2010), 78-106.
  • 16. Rev. Med. Virol, 21 (2011), 227-239.
  • 17. Science, 252 (1991), 854-856.
  • 18. J. Natl. Cancer Inst., 98 (2006), 298-300.
  • 19. Cancer Gene. Ther., 18 (2011), 305-317.
  • 20. Cancer Res., 61 (2001), 3501-3507.
  • 21. Hum. Gene. Ther., 14 (2003), 153-159.
  • 22. J. Theor. Biol., 252 (2008), 109-122.
  • 23. Bull. Math. Biol., 72 (2010), 469-489.
  • 24. Math. Biosci., 199 (2006), 55-78.
  • 25. Cancer Gene Ther., 16 (2009), 873-882.
  • 26. Cancer Res., 66 (2006), 2314-2319.
  • 27. Biol. Direct, 1 (2006), pp. 30.
  • 28. J. Theor. Biol., 263 (2010), 530-543.
  • 29. Biol. Direct, 1 (2006), pp. 6.
  • 30. Cancer Res., 63 (2003), 1317-1324.
  • 31. Gene Therapy and Molecular Biology, 8 (2004), 137-146.
  • 32. J. R. Soc. Interface, 6 (2009), 179-186.
  • 33. PLoS ONE, 4 (2009), e4271.
  • 34. PLoS Comput. Biol., 7 (2011), e1001085.
  • 35. J. Theor. Biol., 245 (2007), 1-8.
  • 36. Clin. Cancer Res., 15 (2009), 2352-2360.
  • 37. Cancer Res., 69 (2009), 1205-1211.
  • 38. Integr. Biol. (Camb), 2 (2010), 41-45.
  • 39. Cancer Res., 60 (2000), 1009-1013.
  • 40. Neoplasia, 1 (1999), 162-169.
  • 41. Proc. Natl. Acad. Sci. U S A, 108 (2011), 18983-18988.
  • 42. PLoS Comput. Biol., 8 (2012), e1002547.
  • 43. Journal of Mathematical Biology, 32 (1994), 251-268.
  • 44. Proceedings of the Royal Society of London Series B-Biological Sciences, 246 (1991), 117-122.
  • 45. Ecology, 82 (2001), 2357-2369.
  • 46. 1991, Oxford, England: Oxford University Press.
  • 47. 2000: Oxford University Press.
  • 48. 2000, Oxford: Oxford University Press.

 

This article has been cited by

  • 1. John Murray, Ruy Ribeiro, Special Issue “Mathematical Modeling of Viral Infections”, Viruses, 2018, 10, 6, 303, 10.3390/v10060303
  • 2. Joanna R. Wares, Joseph J. Crivelli, Chae-Ok Yun, Il-Kyu Choi, Jana L. Gevertz, Peter S. Kim, Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections, Mathematical Biosciences and Engineering, 2015, 12, 6, 1237, 10.3934/mbe.2015.12.1237
  • 3. R. Eftimie, C.K. Macnamara, Jonathan Dushoff, J.L. Bramson, D.J.D. Earn, A. Morozov, M. Ptashnyk, V. Volpert, Bifurcations and Chaotic Dynamics in a Tumour-Immune-Virus System, Mathematical Modelling of Natural Phenomena, 2016, 11, 5, 65, 10.1051/mmnp/201611505
  • 4. Joanna R. Wares, Chae-Ok Yun, Il-Kyu Choi, Joseph J. Crivelli, Peter S. Kim, Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics, Mathematical Biosciences and Engineering, 2015, 12, 4, 841, 10.3934/mbe.2015.12.841
  • 5. Joseph Malinzi, Amina Eladdadi, Precious Sibanda, Modelling the spatiotemporal dynamics of chemovirotherapy cancer treatment, Journal of Biological Dynamics, 2017, 11, 1, 244, 10.1080/17513758.2017.1328079
  • 6. Iris Kemler, Matthew K. Ennis, Claudia M. Neuhauser, David Dingli, In Vivo Imaging of Oncolytic Measles Virus Propagation with Single-Cell Resolution, Molecular Therapy - Oncolytics, 2019, 12, 68, 10.1016/j.omto.2018.12.007
  • 7. David R. Berg, Chetan P. Offord, Iris Kemler, Matthew K. Ennis, Lawrence Chang, George Paulik, Zeljko Bajzer, Claudia Neuhauser, David Dingli, Dominik Wodarz, In vitro and in silico multidimensional modeling of oncolytic tumor virotherapy dynamics, PLOS Computational Biology, 2019, 15, 3, e1006773, 10.1371/journal.pcbi.1006773
  • 8. Adil El Alami laaroussi, Mohamed El Hia, Mostafa Rachik, Rachid Ghazzali, Analysis of a Multiple Delays Model for Treatment of Cancer with Oncolytic Virotherapy, Computational and Mathematical Methods in Medicine, 2019, 2019, 1, 10.1155/2019/1732815

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved