Mathematical Biosciences and Engineering, 2013, 10(3): 821-842. doi: 10.3934/mbe.2013.10.821.

Primary: 58F15, 58F17; Secondary: 53C35.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Modeling bacterial attachment to surfaces as an early stage of biofilm development

1. African Institute for Mathematical Sciences, 6 Melrose road, Muizenberg, 7945
2. The College of Saint Rose, Department of Mathematics, 432 Western Avenue, Albany, NY 12203

Biofilms are present in all natural, medical and industrial surroundings where bacteria live. Biofilm formation is a key factor in the growth and transport of both beneficial and harmful bacteria. While much is known about the later stages of biofilm formation, less is known about its initiation which is an important first step in the biofilm formation.In this paper, we develop a non-linear system of partial differential equations of Keller-Segel type model in one-dimensional space, which couples the dynamics of bacterial movement to that of the sensing molecules. In this case, bacteria perform a biased random walk towards the sensing molecules. We derive the boundary conditions of the adhesion of bacteria to a surface using zero-Dirichlet boundary conditions, while the equation describing sensing molecules at the interface needed particular conditions to be set.The numerical results show the profile of bacteria within the space and the time evolution of the density within the free-space and on the surface. Testing different parameter values indicate that significant amount of sensing molecules present on the surface leads to a faster bacterial movement toward the surface which is the first step of biofilm initiation.Our work gives rise to results that agree with the biological description of the early stages of biofilm formation.
  Figure/Table
  Supplementary
  Article Metrics

Keywords bacterial biofilm; Keller-Segel model; Chemotaxis; sensing molecules.

Citation: Fadoua El Moustaid, Amina Eladdadi, Lafras Uys. Modeling bacterial attachment to surfaces as an early stage of biofilm development. Mathematical Biosciences and Engineering, 2013, 10(3): 821-842. doi: 10.3934/mbe.2013.10.821

References

  • 1. John Wiley and Sons Inc., New York, NY Publisher, 1984.
  • 2. New Scientist, 151 (1996), 32-36.
  • 3. Journal of Theoretical Biology, 289 (2001), 90-95.
  • 4. FEMS Microbiol Review, (2009) 1-19.
  • 5. Biotechnology and Bioengineering, 58 (1997).
  • 6. Journal of Desalination, 250 (2010), 390-394.
  • 7. 2003.
  • 8. SIAM Journal, 62 (2002), 1728-1771.
  • 9. Journal of Environmental Microbiology, 12 (2010), 557-566.
  • 10. Computational Biology and Chemistry, 33 (2009), 269-274.
  • 11. Physical Review E, 66 (2002).
  • 12. Physical Review E, 66 (2002).
  • 13. Nature Journal, 368 (1994), 46-49.
  • 14. Bull. Math. Biol., 68 (2009), 1033-1037.
  • 15. Journal of Theoretical Biology, 26 (1970), 399-415.
  • 16. Journal of Theoretical Biology, 30 (1971), 225-234.
  • 17. Journal of Theoretical Biology, 30 (1971), 235-248.
  • 18. Journal of Theoretical Biology, 233 (2005), 245-251.
  • 19. American Mathematical Society, 99 (1987).
  • 20. Journal of Trends in Microbiology, 9 (2001), 9-10.
  • 21. Review of Microbiology, 2 (2004), 1740-1526.
  • 22. Plastic & Reconstructive Surgery, 126 (2010), 835-842.
  • 23. SIAM Journal, 52 (2010), 221-265.
  • 24. S. S. Antman editor, Springer Publisher, 2003.
  • 25. S. S. Antman editor, Springer publisher, 2002.
  • 26. Journal of Computer Science and Engineering, 11 (2009), 6-15.
  • 27. I. N. Herstein and Gian-Carlo Rota editor Harper and Row publisher.
  • 28. Spring Street Editor, Plenum Press, New York, 1986.
  • 29. Journal of Industrial Microbiology and Biotechnology, 15 (1995), 137-140.
  • 30. International Journal of Antimicrobial Agents, 11 (1999), 217-221.
  • 31. Sci. Am., 238 (1978), 86-95.
  • 32. S. Axler editor, Springer publisher, 2000.
  • 33. FEMS Microbiology Letters, 236 (2004), 163-173.
  • 34. IMA Journal of Applied Mathematics, (2007).
  • 35. Journal of Theoretical Biology, 188 (1997), 177-185.
  • 36. Journal of Bacteriology, 184 (2002), 1140-1154.
  • 37. Journal of Theoretical Biology, 251 (2008), 24-34.
  • 38. Mathematical Biosciences, 158 (1999), 95-126.
  • 39. FEMS Immunol. Med. Microbiol, 59 (2010), 324-336.
  • 40. Journal of Theoretical Biology, 259 (2012), 23-36.
  • 41. Microbial Ecology, 41 (2001), 210-221.
  • 42. Physica A: Statistical Mechanics and its Applications, 282 (2000), 283-303.
  • 43. Journal of Theoretical Biology, 266 (2010), 275-290.
  • 44. Bulletin of Mathematical Biology, 70 (2008), 1570-1607.
  • 45. J. William Costerton Editor Springer Publisher, 2008.
  • 46. International Journal of Antimicrobial Agents, 35 (2010), 322-332.
  • 47. International Journal of Antimicrobial Agents, 35 (2010), 322-332.
  • 48. Biotechnology and Bioengineering, 28 (1986), 314-328.
  • 49. Journal of Science, 273 (1996), 1795-1797.
  • 50. Journal of Bacteriology, 182 (2000), 2675-2679.
  • 51. Solid State Communications, 150 (2010), 21-22.
  • 52. Journal of Simul., 3 (2005), 362-394.
  • 53. Cambridge University Press, 2002.
  • 54. Clinical Microbiology Reviews, 15 (2002).
  • 55. Environmental Microbiology, 11 (2009), 279-288.
  • 56. Journal of Bacteriology, 182 (2000).
  • 57. Journal of Bacteriology, 189 (2007), 4223-4233.
  • 58. Springer Berlin Heidelberg, 4 (2009), 35-64.
  • 59. Last Accessed on June 11, 2012.

 

This article has been cited by

  • 1. Yong Chen, Hengtong Wang, Jiangang Zhang, Ke Chen, Yumin Li, Simulation of avascular tumor growth by agent-based game model involving phenotype-phenotype interactions, Scientific Reports, 2016, 5, 1, 10.1038/srep17992
  • 2. B. D’Acunto, L. Frunzo, M. R. Mattei, Continuum approach to mathematical modelling of multispecies biofilms, Ricerche di Matematica, 2017, 66, 1, 153, 10.1007/s11587-016-0294-8
  • 3. Saheli Ghosh, Asifa Qureshi, Hemant J. Purohit, , Optimization and Applicability of Bioprocesses, 2017, Chapter 15, 305, 10.1007/978-981-10-6863-8_15
  • 4. Mohammad Kalantar, Mohammad Mahdi Mardanpour, Soheila Yaghmaei, A novel model for predicting bioelectrochemical performance of microsized-MFCs by incorporating bacterial chemotaxis parameters and simulation of biofilm formation, Bioelectrochemistry, 2018, 122, 51, 10.1016/j.bioelechem.2018.03.002
  • 5. Mohammad Mahdi Mardanpour, Soheila Yaghmaei, Dynamical Analysis of Microfluidic Microbial Electrolysis Cell via Integrated Experimental Investigation and Mathematical Modeling, Electrochimica Acta, 2017, 227, 317, 10.1016/j.electacta.2017.01.041
  • 6. Mohammad Mahdi Mardanpour, Soheila Yaghmaei, Mohammad Kalantar, Modeling of microfluidic microbial fuel cells using quantitative bacterial transport parameters, Journal of Power Sources, 2017, 342, 1017, 10.1016/j.jpowsour.2017.01.012
  • 7. Mohammad Mahdi Mardanpour, Maryam Saadatmand, Soheila Yaghmaei, Interpretation of the electrochemical response of a multi-population biofilm in a microfluidic microbial fuel cell using a comprehensive model, Bioelectrochemistry, 2019, 10.1016/j.bioelechem.2019.03.003

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved